
Défi BigData
Information Systems for Big Data 1

– Written Exam –

Luis Gustavo Nardin
<gnardin@emse.fr>

18 April 2025

Duration : 2 hours (9h00–11h00)

Instructions

• You are allowed to use an A4 sheet of paper, handwritten by you.

• You are forbidden to use calculators, telephones, computers or any other means of
communication.

• Write your full name in the first page of this document.

• Write your answers directly on this document and hand it in in its entirety at
the end of the allotted time.

• The multiple choice questions have only one correct answer.

Name

Grade :

Remarks :

1

Question 1 : (1 point) What is who in the command LANG=C man -k who :

□ an argument to the option -k

□ a long option

□ an argument to the program

□ a relative path

Question 2 : (1 point) When executing a command, the command is searched in the
directories listed in the PATH environment variable :

□ from left to right

□ in no particular order

□ from right to left

□ including only the first 256 characters

Question 3 : (1 point) Which is NOT a valid command to declare the environment
variable ENV_VAR ?

□ export ENV_VAR=1

□ newvar -x ENV_VAR=1

□ ENV_VAR=1

□ declare -x ENV_VAR=1

Question 4 : (1 point) Which command allows us to copy the file notes.txt located
in the directory tmp in the current directory to the directory /home/user with the name
new_notes.txt ?

□ cp /tmp/notes.txt /home/user/new_notes.txt

□ cp /tmp/notes.txt home/user/new_notes.txt

□ cp tmp/notes.txt /home/user/new_notes.txt

□ cp tmp/notes.txt /new_notes.txt

Question 5 : (1 point) The #!/bin/bash in the first line of a Shell script

□ specifies the path of the file in which the result of the script will be written

□ specifies the path where the script is stored

□ is a comment

□ specifies the executable shell to use for running the script

2

Question 6 : (1.5) Write the regular expression that matches all the patterns below.

Hello World
hello world
world hello
WORLD HELLO
hello hello world
hello world world

Question 7 : (1.5 points) The file games.txt in your current directory has the following
content

2024-08-16 Nimes vs Orléans Loss 1-2
2024-08-23 Nimes vs Châteauroux Win 1-0
2024-08-30 Valenciennes vs Nimes Win 2-0
2024-09-06 Nimes vs Rouen Match 2-2
2024-09-13 Concameau vs Nimes Win 1-0
2004-09-20 Nimes vs Versailles Win 1-0

Write a command or chain of commands (NOT a script) to find all games in which
Nimes won when playing at home. The team playing at home is the team name before
“vs”.

Question 8 : (2 points) The command who returns the list of users logged on in the
computer in the format

gnardin tty1 2025-04-15 18:03
gnardin pts/1 2025-04-15 18:03 (tmux(1613).%0
asmith tty2 2025-03-10 13:53
wblack tty3 2025-04-16 11:09

Write a command or chain of commands (NOT a script) to create the file logged_on.txt
which contains a listing of the unique user names currently logged on in inverted alpha-
betical order.

3

Question 9 : (3.0 points) Suppose you have the users.csv file with the content below.
id,first-name,last-name,email,login,logout,cost
1,John,Smith,john.smith@example.com,2023-01-15,2023-03-20,125.99
2,Jane,Doe,jane.doe@example.com,2023-01-16,2023-03-21,210.50
3,Bob,Johnson,bob@example.com,2023-01-17,2023-03-22,0
4,Alice,Williams,alice.williams@example.com,2023-01-18„75.25
5„Brown,mike.brown@example.com,2023-01-19,2023-03-24,150.75
6,Sarah,Miller,sarah.miller@example.com,invalid_date,2023-03-25,95.00
7,David,Jones,david.jones@example.com,2023-01-21,2023-03-26,300.00
8,Lisa,Garcia,lisa.garcia@example.com,2023-01-22,2023-03-27,-50.00
9,James,Martinez,mymail@example.com,2023-01-23,2023-03-28,125.00

Write an awk script that

1. Drop the heading line (i.e., first line)

2. Fill in empty name fields (i.e., first-name and last-name) with the word Unknown

3. Check if the dates are properly formatted, replacing those not properly formatted
by: login field with 2023-01-20 and logout with 2023-01-23

4. Replace negative costs by 0.0

4

Question 10 : (3 points) Explain each line of code in the script below (arguments,
processing, results, etc.).

#!/bin/bash

if [[$# -ne 1]]
then

echo "Usage: ${0} nameList" >&2
exit 1

fi

if [[! -f "$1"]]
then

echo "${1} error." >&2
exit 1

fi

usernames=‘cat "$1"‘
for i in $usernames
do

if [[-d $i]]
then

echo "${i} already exists." >&2
exit 1

fi

mkdir $i
chmod 775 $i
chown $i $i

done

5

Question 11 : (4 points) You have been hired to provide a solution to summarize and
consolidate the data of the daily sales generated by the stores of a large retailer. The
stores are geographically distributed all over the world and the headquarter is located in
Saint-Étienne. The stores generate one file per day containing their sales in the format
below.

Date_Time;Store;Product;Quantity;Unit_Price;Unit_Cost;Unit_Profit;Total_Price
02/10/2022 08:01;store10;p3;7;269.33;105.20;164.13;1885.28
02/10/2022 08:49;store10;p32;9;38.32;15.21;23.10;344.85
02/10/2022 08:54;store10;p2;4;414.34;211.85;202.49;1657.35
...

You are required to write a Bash script (no awk script only) that receives as input the
directory where the daily files are stored. The script should check if the directory exists
and return an error if not. Moreover, the script must contain a function that receives a
full path to a file containing the sale records, summarizes the daily sales by product and
writes the result to the same directory with name summary.txt.

6

Command References
CAT(1) User Commands CAT(1)

NAME
cat - concatenate files and print on the standard output

SYNOPSIS
cat [OPTION]... [FILE]...

GREP(1) User Commands GREP(1)

NAME
grep, egrep, fgrep, rgrep - print lines that match patterns

SYNOPSIS
grep [OPTION...] PATTERNS [FILE...]
grep [OPTION...] -e PATTERNS ... [FILE...]

DESCRIPTION
grep searches for PATTERNS in each FILE. PATTERNS is one or
more patterns separated by newline characters, and grep prints
each line that matches a pattern. Typically PATTERNS should be
quoted when grep is used in a shell command.

A FILE of “-” stands for standard input. If no FILE is given,
recursive searches examine the working directory, and
nonrecursive searches read standard input.

Debian also includes the variant programs egrep, fgrep and
rgrep. These programs are the same as grep -E, grep -F, and
grep -r, respectively. These variants are deprecated upstream,
but Debian provides for backward compatibility. For portability
reasons, it is recommended to avoid the variant programs, and
use grep with the related option instead.

OPTIONS

Pattern Syntax
-E, --extended-regexp

Interpret PATTERNS as extended regular expressions
(EREs, see below).

Matching Control
-v, --invert-match

Invert the sense of matching, to select non-matching
lines.

General Output Control
-c, --count

Suppress normal output; instead print a count of
matching lines for each input file. With the -v,
--invert-match option (see above), count non-matching
lines.

-o, --only-matching
Print only the matched (non-empty) parts of a matching
line, with each such part on a separate output line.

SORT(1) User Commands SORT(1)

NAME
sort - sort lines of text files

SYNOPSIS
sort [OPTION]... [FILE]...
sort [OPTION]... --files0-from=F

DESCRIPTION
Write sorted concatenation of all FILE(s) to standard output.

With no FILE, or when FILE is -, read standard input.

7

Mandatory arguments to long options are mandatory for short op-
tions too. Ordering options:

-d, --dictionary-order
consider only blanks and alphanumeric characters

-h, --human-numeric-sort
compare human readable numbers (e.g., 2K 1G)

-n, --numeric-sort
compare according to string numerical value

-r, --reverse
reverse the result of comparisons

-t, --field-separator=SEP
use SEP instead of non-blank to blank transition

-u, --unique
with -c, check for strict ordering; without -c, output
only the first of an equal run

TEE(1) User Commands TEE(1)

NAME
tee - read from standard input and write to standard output and
files

SYNOPSIS
tee [OPTION]... [FILE]...

TR(1) User Commands TR(1)

NAME

tr - translate or delete characters

SYNOPSIS
tr [OPTION]... STRING1 [STRING2]

DESCRIPTION
Translate, squeeze, and/or delete characters from standard in-
put, writing to standard output. STRING1 and STRING2 specify
arrays of characters ARRAY1 and ARRAY2 that control the action.

-c, -C, --complement
use the complement of ARRAY1

-d, --delete
delete characters in ARRAY1, do not translate

-s, --squeeze-repeats
replace each sequence of a repeated character that is
listed in the last specified ARRAY, with a single occur-
rence of that character

-t, --truncate-set1
first truncate ARRAY1 to length of ARRAY2

--help display this help and exit

--version
output version information and exit

ARRAYs are specified as strings of characters. Most represent
themselves. Interpreted sequences are:

\NNN character with octal value NNN (1 to 3 octal digits)
\\ backslash
\a audible BEL
\b backspace
\f form feed

8

\n new line
\r return
\t horizontal tab
\v vertical tab

CHAR1-CHAR2
all characters from CHAR1 to CHAR2 in ascending order

[CHAR*]
in ARRAY2, copies of CHAR until length of ARRAY1

[CHAR*REPEAT]
REPEAT copies of CHAR, REPEAT octal if starting with 0

[=CHAR=]
all characters which are equivalent to CHAR

Translation occurs if -d is not given and both STRING1 and
STRING2 appear. -t may be used only when translating. ARRAY2
is extended to length of ARRAY1 by repeating its last character
as necessary. Excess characters of ARRAY2 are ignored. Char-
acter classes expand in unspecified order; while translating,
[:lower:] and [:upper:] may be used in pairs to specify case
conversion. Squeezing occurs after translation or deletion.

UNIQ(1) User Commands UNIQ(1)

NAME
uniq - report or omit repeated lines

SYNOPSIS
uniq [OPTION]... [INPUT [OUTPUT]]

DESCRIPTION
Filter adjacent matching lines from INPUT (or standard input),
writing to OUTPUT (or standard output).

With no options, matching lines are merged to the first occur-
rence.

-c, --count
prefix lines by the number of occurrences

Note: ’uniq’ does not detect repeated lines unless they are ad-
jacent. You may want to sort the input first, or use ’sort -u’
without ’uniq’.

WC(1) User Commands WC(1)

NAME
wc - print newline, word, and byte counts for each file

SYNOPSIS
wc [OPTION]... [FILE]...
wc [OPTION]... --files0-from=F

DESCRIPTION
Print newline, word, and byte counts for each FILE, and a total
line if more than one FILE is specified. A word is a
non-zero-length sequence of printable characters delimited by
white space.

With no FILE, or when FILE is -, read standard input.

The options below may be used to select which counts are
printed, always in the following order: newline, word, charac-
ter, byte, maximum line length.

-c, --bytes
print the byte counts

-m, --chars
print the character counts

-l, --lines
print the newline counts

9

