ICM M-INFO and M1 CPS2 "2024-10-22" xsd:date

ICM — Computer Science Major and M1 Cyber Physical and Social Systems
Data Interoperability and Semantics

Exam "PT1H30M"~xsd:duration

You are allowed to use an A4 sheet of paper, hand-written, on both side.
You are not allowed to use any computer or electronic device during the test.

Part 1 (5 points) Comparison of main data formats (target: 20min for this exercise)

On one large full-page table, shortly describe or compare each data formats from List 1 in terms of the features and
criteria from List 2.
NOTE: Be concise. You don’t need to justify.

List 1. Data Formats: 1. CSV 2. JSON 3. XML 4. YAML

List 2: Features and criteria

Simplicity: How easy is the format to create, read, and modify by both humans and machines?

Human-Readability: Can the data be easily understood and edited in a text editor or similar tool?

Interoperability: Is the format widely supported across different tools, software, and platforms?

File Size/Overhead: How lightweight is the format in terms of file size, especially for large datasets?

Data Type Support: Does the format natively support a variety of data types (e.g., numbers, dates, booleans)

and complex structures (e.g., arrays, objects)?

Metadata Support: Does the format allow embedding of metadata (e.g., column types, descriptions, units)

within the file?

7. Structural Complexity: Can the format handle complex data structures, such as nested, hierarchical,
relational, or graph data?

8. Query: Are there dedicated query language for the format?

9. Schema Validation: Does the format support a schema or mechanism to enforce data consistency and
integrity?

10. Extensibility: Can the format be extended with custom structures or elements without breaking compatibility
(e.g., custom tags or schemas)?

agrwONE

o

1/6

ICM M-INFO and M1 CPS2 "2024-10-22" xsd:date

Part 2 (/20 points) ASN.1

ASN.1 is a standard interface description language for defining data structures that can be serialized and deserialized
in a cross-platform way. It provides a formal way to describe data and enables interoperability across different
systems by ensuring consistent data encoding and decoding. While ASN.1 is now 40 years old, it is still broadly used
in telecommunication and computer networking, such as for 5G mobile phone communications, LDAP directories,
Securing HTTP communications with TLS (X.509) Certificates, Intelligent Transport Systems, and the Interledger
Protocol for digital payments.

Protocol developers define data structures in ASN.1 modules, which are generally a section of a broader standards
document written in the ASN.1 language. Here are some common ASN.1 base data types.

BOOLEAN [tag number 0110]: value can be TRUE or FALSE

INTEGER [tag: 0210]: a signed integer. A valid range can be specified with the notation (min..max)

BIT STRING [tag number 0310]: used for bit arrays, where each bit has an individual meaning.

ENUMERATED [tag number 1010]: a list of named items.

SEQUENCE [tag nhumber 1610]: a collection of items to group together.

CHOICE [n/a]: one of the items can be present at a time.

IA5String [tag number 2210]: a printable ASCII string.

Below is an ASN.1 module definition, adapted from the ETSI Intelligent Transport Systems (ITS) Common Data
Dictionary definition https://forge.etsi.org/rep/ITS/asnl/cdd ts102894 2.

Note: “ego” is how we name the vehicle on which the communicating ITS system is deployed. “alter” is another
vehicle that is observed by “ego”, or that communicates with “ego”.

ETSI-ITS-CDD DEFINITIONS AUTOMATIC TAGS ::=

BEGIN DriveDirection ::= ENUMERATED { -- real def --
EgoData ::= SEQUENCE { -- invented for the exam - forward (9),
id IASString, backward (1),
energyStorage EnergyStorageType, unavailable (2)
speed SpeedValue, }
driveDirection DriveDirection,
lanePosition LanePositionOptions LanePositionOptions ::= CHOICE { -- real def --
} simplelanePosition LanePosition,
simpleLaneType LaneType,
AlterData ::= SEQUENCE { -- invented -- detailedlanePosition LanePositionAndType,
id IA5String OPTIONAL,
message IA5String OPTIONAL, }
safeDistance SafeDistanceIndicator,
speed SpeedValue, LanePositionAndType::= SEQUENCE { -- real def --
driveDirection DriveDirection, transversalPosition LanePosition,
lanePosition LanePositionOptions laneType LaneType DEFAULT traffic,
}
}
EnergyStorageType ::= BIT STRING { -- real def --
hydrogenStorage (9), LanePosition ::= INTEGER { -- real def --
electricEnergyStorage (1), offTheRoad (-1),
liquidPropaneGas (2), innerHardShoulder (0),
compressedNaturalGas (3), outerHardShoulder (14)
diesel 4), } (-1..14)
gasoline (5),
ammonia (6) LaneType::= INTEGER{ -- simplified: only some
}(SIZE(7)) values --
traffic (9),
SafeDistanceIndicator::= BOOLEAN -- real def -- pedestrian (12),
parking (17),
SpeedValue ::= INTEGER { -- unit is 0,01 m/s -- emergency (18)
standstill (@), ce
outOfRange (16382), }(0..31)
unavailable (16383) END
} (0..16383)

Because ASN.1 is both human-readable and machine-readable, an ASN.1 compiler can compile modules into libraries
of code, codecs, that decode or encode the data structures.

2/6

https://forge.etsi.org/rep/ITS/asn1/cdd_ts102894_2

ICM M-INFO and M1 CPS2 "2024-10-22""xsd:date
ASN.1 defines different encoding rules that specify how to represent a data structure as bytes. Basic Encoding Rules
(BER) is the oldest one, Packed Encoding Rules (PER) is the most compact. XML Encoding Rule (XER) is based on
XML. JSON encoding rules (JER) is the easiest to start playing with ASN.1 and to debug applications.
In this part we will consider two messages, one about “ego”, one about “alter”:
Message 1: “Ego is a Highway Grass Cutting Machine with id AB-123-CD. It uses and stores diesel, liquid propane
gas, and electricity. It drives forward on the outer hard shoulder at a speed of 10.8 km/h.”
Message 2: “Alter EF-456-GH is moving forward at 144 km/h on traffic lane number 3, not respecting safe distances”
Note: Check out the appendices A-E, as they are all important to answer the questions in this part.
Question 1. (1 pt) Justify that the encoded value for speed 10.8 km/h is integer 300.
Question 2. (2 pts)

e How IEEE 754 floating point number would encode the value 144.0 ?

¢ Find an IEEE 754 floating point number that approximates 10.8 at +0.05
Question 3. (4 pts) Write a document that could be a plausible JER encoding of Message 1 about “ego”

Question 4. (1 pt) BER-encode the BIT STRING. diesel+liquidPropaneGas+electricEnergyStorage

The XML document below is the XER encoding of Message 2 about “alter”:

1 <?xml version="1.0" encoding="UTF-8"?>

2 <AlterData>

3 <id>EF-456-GH</id>

4 <safeDistance>

5 <false />

6 </safeDistance>

7 <speed>4000<speed>

8 <driveDirection>

9 <forward />
10 </driveDirection>
11 <lanePosition>
12 <detailedlanePosition>
13 <transversalPosition>3</transversalPotion>
14 <laneType>traffic</laneType>
15 </detailedlanePosition>
16 </lanePosition>
17 </AlterData>

Question 5 (1 pt) I injected two syntax errors in this document. For each error, give the line number and explain it.
Question 6. (1 pt) What would be the BER encoding of (a) positive integer 4000 ? (b) negative integer -120 ?
Question 7. (1 pt) Justify that the maximal encodable length in BER is 21008
Question 8. (1 pt) Assume we want to set the message I1A5String in Message 2 about “alter” as follows:

“Warning: Automated grass cutter ahead. Maintain safe distance. Speed reduced. Hazardous debris possible.

Stay alert for sudden stops and avoid lane changes near the vehicle. Thank you for your cooperation.”

This message has a total of 205 characters. Give the most significant four bytes of that message encoded using BER
Question 9. (1 pt) Justify that the identifier octet for a SEQUENCE needs to be 3016
Question 10. (4 pts) Determine the BER-encoding for Message 2 about “alter”. Justify step by step.

Question 11. (1 pt) What can go wrong with id and message being both OPTIONAL in the definition of AlterData ?
Suggest additional encoding rules involving bits 8 and 7 of the identifier octet to avoid this issue.

Question 12 (2 pts) The most compact ASN.1 encoding rules are the Packed Encoding Rules (PER). This is the one

commonly used in 3GPP cellular technologies such as UMTS (3G), LTE (4G), or 5G.
Give (4 maximum) concrete ideas for how PER greatly improves compaction with respect to BER.

3/6

ICM M-INFO and M1 CPS2 "2024-10-22""xsd:date

Appendix A: Single precision IEEE 754 floating-point standard

32 Bits
Sign Exponent Mantissa - | § % 2 (exp—127) X 1. f'rac
<«— 1 Bit—> 8 Bits 23 Bits
Appendix B: ASCII Table

Decimal Hex Char Decimal Hex Char Decimal Hex Char Decimal Hex Char
0 0 [NULL] 32 20 [space] | 64 40 @ 96 60 :
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 | 105 69 i
10 A [LINE FEED] 42 2A * 74 4A] 106 B6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] a4 2C , 76 ac L 108 6C I
13 D [CARRIAGE RETURN] 45 2D - 77 4D ™ 109 6D m
14 E [SHIFT OUT] 46 2E : 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 a4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 u 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [END OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE) 58 3A : 90 5A z 122 7A z
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C [
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 SE ~ 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

4/6

ICM M-INFO and M1 CPS2 "2024-10-22" xsd:date

Appendix C: Introduction to ASN.1 Basic Encoding Rules

The Basic Encoding Rules (BER) uses a Tag-Length-Value (TLV) format for encoding all information.
The tag indicates the identifier of the data that follows, the length indicates the total length of value (in
bytes), and the value represents the actual data contents. Each value may consist of one or more TLV-
encoded values, each with its own tag, length, and value.

Identifier octet (simplified)
The identifier octet encodes the ASN.1 tag of the type of the data value as follows:

Identifier octet

A
v

Bits 8 7 6 5 4 3 2 1
Class PIC Tag number
E 0 = Primitive
1 = Constructed X.690_F3

In the context of this exam, we assume that bits 8 and 7 are always set to 0.
bit 6 shall be a 0 if the data contents is primitive, or 1 if it is constructed.
bits 5 to 1 encode the number of the tag as a binary integer with bit 5 as the most significant bit.

Encoding Lengths
Length is always specified in octets, and includes only the octets of the actual value (the contents). It does
not include the lengths of the identifier or of the length field itself. We consider two ways to encode lengths:

Short form: for lengths between 0 and Long form: for lengths between 0 and 2% octets, the long
127, the one-octet short form can be used. | form can be used. It starts with an octet that contains the

In the encoding below, bit 8 of the length length of the length, followed by the actual length of the
octet is set to 0, and the length is encoded | encoded value. For example, if the first octet of the length
as an unsigned binary value in the octet's | contains the value 4, the actual length of the contents is

rightmost seven bits. contained in the next four octets.
8 1 8 1 8 1 8 1
0 Length 1 N Length N Length 1

Encoding of a boolean value: The encoding of a boolean value shall be primitive. The contents octets
shall consist of a single octet. 0 if the value is FALSE, non-zero if the value is TRUE

Encoding of an integer value: The encoding of an integer value shall be primitive.
An integer value is encoded as a two’s complement binary number on the smallest possible number of
octets.

Encoding of a bit string: See appendix D “BER encoding of a bitstring value”

Encoding of an enumerated value
The encoding of an enumerated value shall be that of the integer value with which it is associated.

Encoding of a sequence value: See appendix E “BER encoding of a sequence value”

Encoding of a choice value

The encoding of a choice value shall be the same as the encoding of a value of the chosen type.
NOTE 1 — The encoding may be primitive or constructed depending on the chosen type.
NOTE 2 — The tag used in the identifier octets is the tag of the chosen type, as specified in the ASN.1 definition of
the choice type.

5/6

ICM M-INFO and M1 CPS2 "2024-10-22" xsd:date

Appendix D: BER encoding of a bitstring value

This is an excerpt of Rec. ITU-T X690 (pp. 8-9), available online at https://www.itu.int/rec/T-REC-X.690
8.6 Encoding of a bitstring value

8.6.1 The encoding of a bitstring value shall be either primitive or constructed at the option of the sender.
NOTE — Where it is necessary to transfer part of a bit string before the entire bitstring is available, the constructed encoding is used.

8.6.2 The contents octets for the primitive encoding shall contain an initial octet followed by zero, one or more
subsequent octets.

8.6.2.1 The bits in the bitstring value, commencing with the leading bit and proceeding to the trailing bit, shall be placed
in bits 8 to 1 of the first subsequent octet, followed by bits 8 to 1 of the second subsequent octet, followed by bits 8 to 1
of each octet in turn, followed by as many bits as are needed of the final subsequent octet, commencing with bit 8.

NOTE — The terms "leading bit" and "trailing bit" are defined in Rec. ITU-T X.680 | ISO/IEC 8824-1 as follows: The first bit in a bit string is
called the leading bit. The final bit in a bit string is called the trailing bit.

8.6.2.2 The initial octet shall encode, as an unsigned binary integer with bit 1 as the least significant bit, the number of
unused bits in the final subsequent octet. The number shall be in the range zero to seven.

8.6.2.3 If the bitstring is empty, there shall be no subsequent octets, and the initial octet shall be zero.
[...]
8.6.4.2 Example

If of type BIT STRING, the value '@A3B5F291CD'H can be encoded as shown below. In this example, the bit string is
represented as a primitive:

BitString Length Contents

0316 0716 040A3B5F291CDO0¢

Appendix E: BER encoding of a sequence value
This is an excerpt of Rec. ITU-T X690 (pp. 10), available online at https://www.itu.int/rec/T-REC-X.690

8.9 Encoding of a sequence value
8.9.1 The encoding of a sequence value shall be constructed.

8.9.2 The contents octets shall consist of the complete encoding of one data value from each of the types listed in
the ASN.1 definition of the sequence type, in the order of their appearance in the definition, unless the type was
referenced with the keyword OPTIONAL or the keyword DEFAULT.

8.9.3 The encoding of a data value may, but need not, be present for a type which was referenced with the keyword
OPTIONAL or the keyword DEFAULT. If present, it shall appear in the encoding at the point corresponding to the
appearance of the type in the ASN.1 definition.

EXAMPLE
If of type:

SEQUENCE {name IA5String, ok BOOLEAN}
the value:

{name "Smith", ok TRUE}
can be encoded as:

Sequence Length Contents

IA5String Length Contents
166 0544 "Smith"
Boolean Length Contents

6/6

https://www.itu.int/rec/T-REC-X.690
https://www.itu.int/rec/T-REC-X.690

