Data Interoperability and Semantics

< Part 4. The value of data >

Maxime Lefrançois https://maxime-lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/data

Data Interoperability and SemanticsOutline

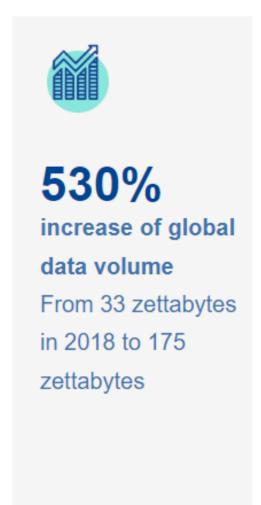
- < Part 4. The value of data >
 - Part 4.1. Value as one of the V's of Big Data
 - Part 4.2. Data, Information, Knowledge, Metadata, ...
 - Part 4.3. Interoperability unlocks the value of data
 - Part 4.4. Open data generates economic and societal value
 - Part 4.5. Machine-actionability of data increases its value

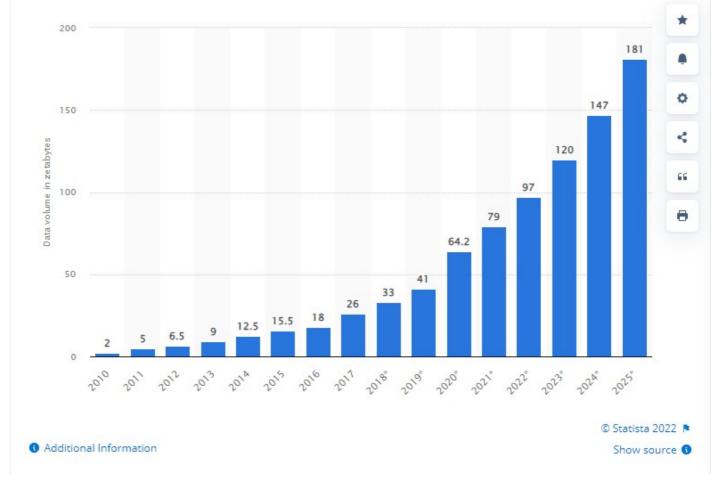
Data Interoperability and Semantics

Part 4. The value of data

Part 4.1. Value as one of the V's of Big Data

Maxime Lefrançois https://maxime-lefrancois.info


Course unit URL: https://ci.mines-stetienne.fr/cps2/course/data


Orders of magnitude of the total amount of data created, captured, copied, and consumed

globally?

Multiple-byte units							
Decimal			Binary				
Value		Metric	Value		IEC		Legacy
1000	kB	kilobyte	1024	KiB	kibibyte	KB	kilobyte
1000 ²	MB	megabyte	1024 ²	MiB	mebibyte	MB	megabyte
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte
10004	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		_
1000 ⁶	ΕB	exabyte	1024 ⁶	EiB	exbibyte		_
1000 ⁷	ZΒ	zettabyte	1024 ⁷	ZiB	zebibyte		_
1000 ⁸	ΥB	yottabyte	1024 ⁸	YiB	yobibyte		_
Orders of magnitude of data							

Projected figures 2025 for the total amount of data created, captured, copied, and consumed globally

https://www.statista.com/statistics/871513/worldwide-data-created/

Projected figures 2025

increase of global

data volume

zettabytes

From 33 zettabytes in 2018 to 175

€829 billion

value of data economy in the EU27

From €301 billion (2.4% of EU GDP) in 2018

10.9 million

data

professionals in the EU27

From 5.7 million in 2018

65%

Percentage of EU population with basic digital skills

From 57% in 2018

Data Never Sleeps 9.0

How much data is generated every minute?

The 2020 pandemic upended everything, from how we engage with each other to how we engage with brands and the digital world. At the same time, it transformed how we eat, how we work and how we entertain ourselves. Data never sleeps and it shows no signs of slowing down. In our 9th edition of the "Data Never Sleeps" infographic, we bring you a glimpse of how much data is created every digital minute in our increasingly data-driven world.

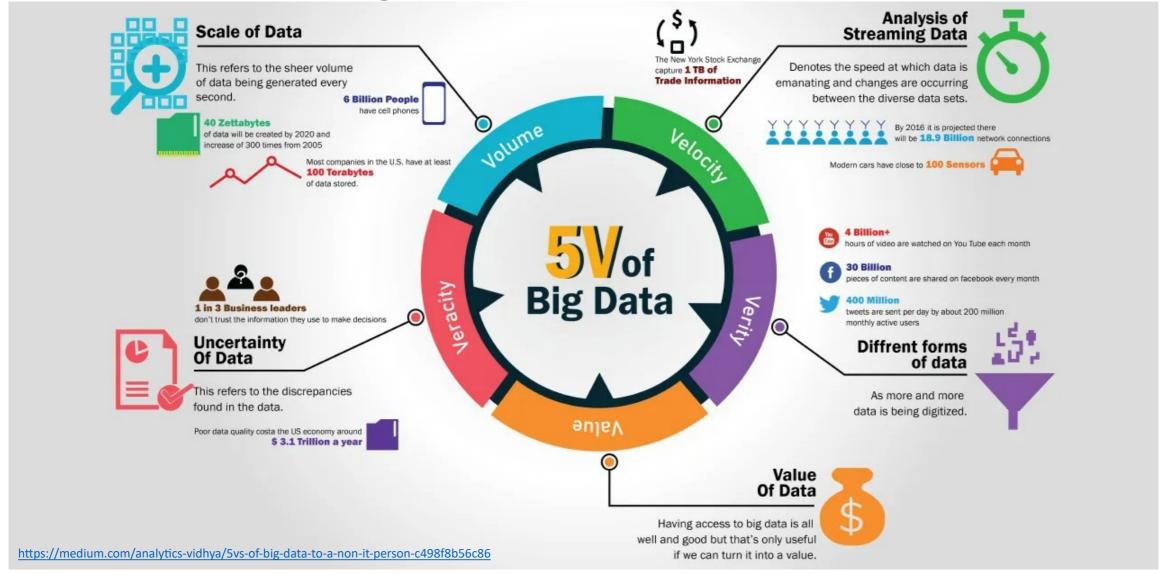
This happens every minute of every day, according to DOMO (Source: Data Never Sleeps 9.0)

https://www.domo.com/learn/infographic/data-never-sleeps-9

As of July 2021, the internet reaches 65% of the world's population and now represents 5.17 billion people—a 10% increase from January 2021. Of this total, 92.6 percent accessed the internet via mobile devices. According to Statista, the total amount of data consumed globally in 2021 was 79 zettabytes, an annual number projected to grow to over 180 zettabytes by 2025.

Global Internet Population Growth (IN BILLIONS)

As the world changes, businesses need to change too—and that requires data. Domo gives you the power to make data-driven decisions at any moment, on any device, so that you can make smart choices in a rapidly changing world. Every click, swipe, share, or like tells you something about your customers and what they want, and Domo is here to help you and your business make sense of all of it.

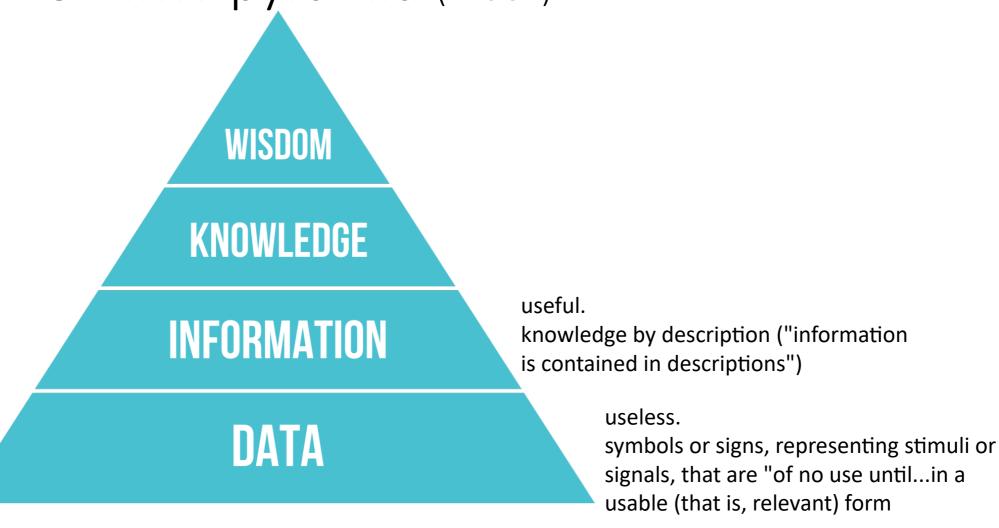

Learn more at domo.com

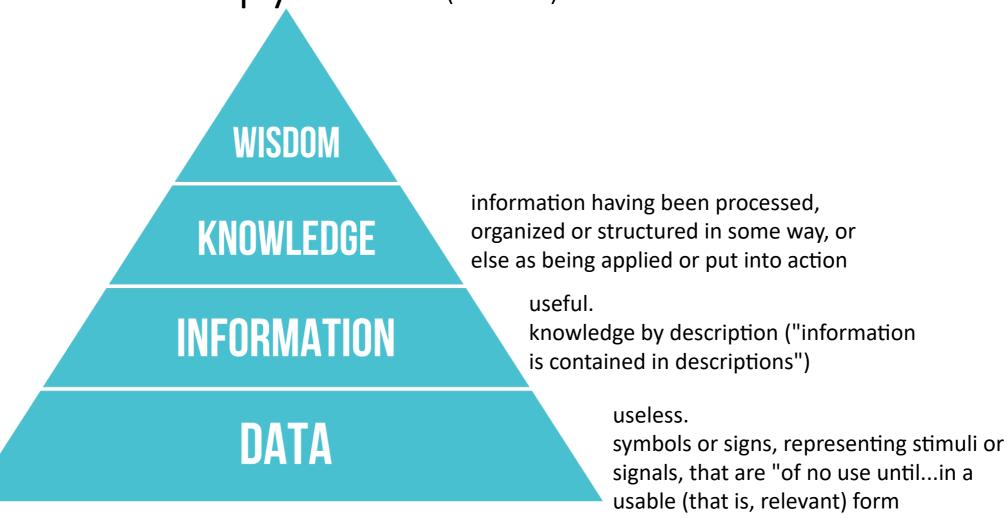
SOURCES: LOCAL IQ, BUSINESS OF APPS, DUSTIN STOUT, HOOTSUITI EXPANDED RAMBLINGS, INTERNET WORLD STATS, STATISTA, CNBC, BRANDWATCH, KILL THE CABLE BILL, YOUTUBE, KINSTA, THE YER-MANAGEMENT COMMUNICATION: A CASE ANALYSIS APPROACH, INTERNET LUC STATISTO.

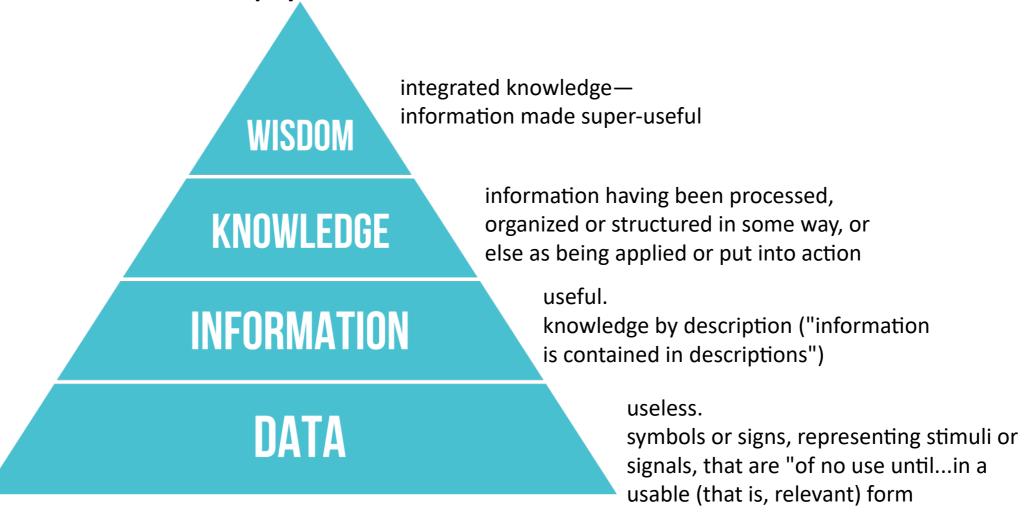
The 5 V's of Big Data?

Data Interoperability and Semantics

Part 4. The value of data


Part 4.2. Data, Information, Knowledge, Metadata, ...


Maxime Lefrançois https://maxime-lefrancois.info


Course unit URL: https://ci.mines-stetienne.fr/cps2/course/data

useless.
symbols or signs, representing stimuli or signals, that are "of no use until...in a usable (that is, relevant) form

Still... **WISDOM** we often use **KNOWLEDGE** « Data » **INFORMATION** to generalize DATA

Definitions on Data

— ISO/IEC20546:2019 (Big data – Overview and vocabulary)

Dataset

Identifiable collection of data available for access or download in one or more formats

Data

Re-interpretable representation of information in a formalized manner suitable for communication, interpretation, or processing

Note 1 to entry: Data can be processed by humans or by automatic means.

Metadata

Data about data or data elements, possibly including their data descriptions and data about data ownership, access paths, access rights and data volatility

Information

Data that are processed, organised and correlated to produce meaning.

Note 1 to entry: Information concerns facts, concepts, objects, events, ideas, processes, etc.

Metadata

"data that provides information about other data"

- Descriptive metadata the descriptive information about a resource.
 - For discovery and identification.
 - Ex: title, abstract, author, keywords.
- **Structural metadata** containers of data, how compound objects are put together
 - Ex, how pages are ordered to form chapters.
 - Ex: types, versions, relationships, and other characteristics of digital materials.
- Administrative metadata the information to help manage a resource
 - Ex: resource type, permissions, time, when and how it was created.
- Reference metadata contents and quality
 - For quality assessment of the data
 - Ex: conceptual metadata, quality metadata, methodological metadata.
- Statistical metadata, also called process data,
 - May describe processes that collect, process, or produce statistical data.
 - Number of rows, columns, etc.
- Legal metadata –

Data Interoperability and Semantics

Part 4. The value of data

Part 4.3. Interoperability unlocks the value of data

Maxime Lefrançois https://maxime-lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/data

Data Analytics vs Data Processing

— ISO/IEC20546:2019 (Big data – Overview and vocabulary)

Data Analytics

Composite concept consisting of data acquisition, data collection, data validation, data processing, including data quantification, data visualisation and data interpretation

Data Processing

Systematic performance of operations upon data

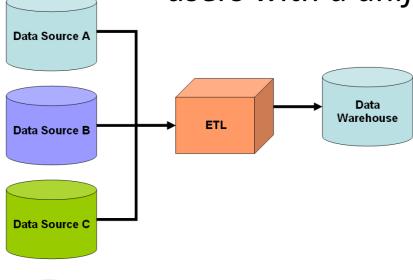
Note 1 to entry: Example: Arithmetic or logic operations upon data, merging or sorting of data, or operations on text, such as editing, sorting, merging, storing, retrieving, displaying, or printing.

Data silos problem illustrated

Repositories of fixed data that are isolated, incompatible, or not integrated

Sales Purchasing Marketing NAME OF THE **BUDGET RANGE** CLIENT NAME OF THE WHAT BOOKS **BUDGET RANGE** CLIENT HE BUYS NAME_HIS **BIRTHDAY BUDGET RANGE BIRTHDAY** WHAT BOOKS DEVICE BIRTHDAY HE LIKES

Data integration


combining **heterogeneous data** and providing users with a unified view of them.

Simple schematic for a data warehouse.

The Extract, transform, load (ETL) process extracts information from the source databases, transforms it and then loads it into the data warehouse.

Simple schematic for a dataintegration solution.

A system designer constructs a mediated schema against which users can run queries. The virtual database interfaces with the source databases via wrapper code if required.

Sub-areas:

- Data warehousing
- Data migration
- Enterprise application/information integration
- Master data management

20

https://en.wikipedia.org/wiki/Data_integration

Interoperability vs Portability

— IEEE Standard Computer Dictionary — ISO/IEC19941:2017 (Cloud computing – interoperability and portability)

Interoperability

Ability of two or more systems or components to exchange information and to mutually use the information that has been exchanged

Portability

Ability to easily transfer data from one system to another without being required to re-enter data

Interoperability as an enabler for the potential value of data

ex: Internet of Things

Nearly 40 percent of economic impact requires interoperability between IoT systems

¹ Includes sized applications only; includes consumer surplus.

NOTE: Numbers may not sum due to rounding.

SOURCE: Expert interviews; McKinsey Global Institute analysis

² Less than \$100 billion.

Interoperability at different levels: from the hardware to policies

- Policies: Laws, regulations, norms, ...
- Behaviour: Processus, services, operations, ...
- Semantic: Knowledge domain vocabularies, taxonomies, ontologies, ...
- Syntactic: Encoding, Formats, Schemas, ...
- Transport: see also Open Systems Interconnections (OSI) network layers
- OS: Kernel, File systems,...
- Hardware: Instruction Set Architectures, ...

ISO/IEC definitions of interoperability

Transport interoperability

interoperability where information exchange uses an established communication infrastructure between the participating systems

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary

Syntactic interoperability

interoperability such that the formats of the exchanged information can be understood by the participating systems

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary

Semantic data interoperability

interoperability so that the meaning of the data model within the context of a subject area is understood by the participating systems

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary

Behavioural interoperability

interoperability so that the actual result of the exchange achieves the expected outcome

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary

Policy interoperability

interoperability while complying with the legal, organizational, and policy frameworks applicable to the

participating systems

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary4

Data Interoperability – a definition

Data interoperability addresses the ability of systems and services that create, exchange and consume data to have clear, shared expectations for the contents, context and meaning of that data.

— https://datainteroperability.org/

Syntactic interoperability

interoperability such that the formats of the exchanged information can be understood by the participating systems

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary

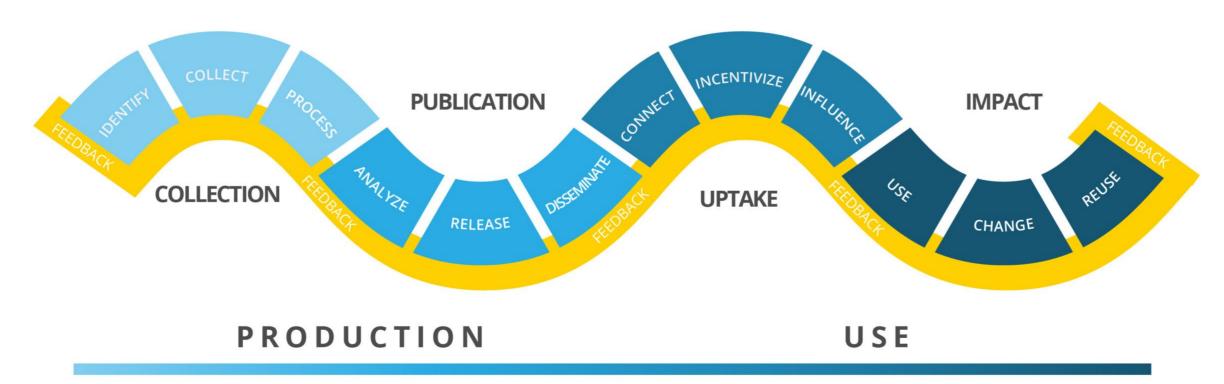
Semantic data interoperability

interoperability so that the meaning of the data model within the context of a subject area is understood by the participating systems

— ISO/IEC 22123-1:2021, Cloud computing — Part 4: Vocabulary

Norm-based interoperability

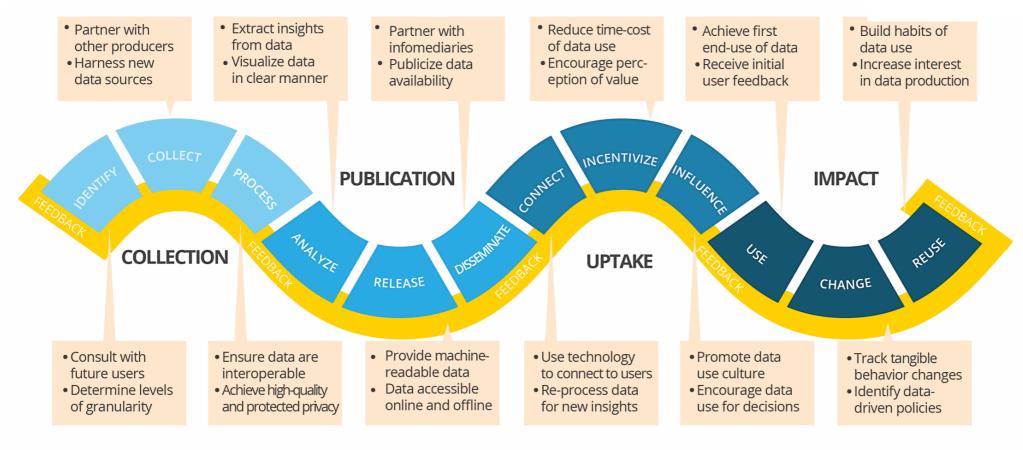
- Hardware and/or software standards
- Standard = Detailed set of technical requirements intended to establish a certain uniformity (in a field of hardware or software development)
- Standard ---- Norm: no clear boundary
 - docx: Microsoft
 - HTML, XML: World Wide Web consortium (W3C)
 - SIM cards: European Telecommunication Standard Institute (ETSI)
 - Postscript became standardized after release
 - De facto standards (not produced by a standard development organization). example: csv, json, rar, pdf, java, flash


Data Interoperability and Semantics

Part 4. The value of data

Part 4.4. Sharing data generates economic and societal value

The Data Value chain



increasing value of data

The Data Value chain

increasing value of data

USE

PRODUCTION

The Data Value roadblocks

PRODUCTION

USE

increasing value of data

Roadblocks for **production** include lack of financial, human, and technological resources; low data literacy; lack of trust between users and data collectors; blindspots in data gaps; lack of country ownership; and lack of government desire for transparency.

Roadblocks for **use** include low political support; lack of data relevance to decisions; poor quality; lack of trust in government data use; no rewards or results of data use; financial constraints; corruption; data silos; and lack of partnerships between infomediaries.

Open Data in the US

data.gov

May 30, 2009; 13 years ago

Launched

Current status Active

- Data.gov 2009
- Legal framework:
 - The U.S. Open Government Directive of December 8, 2009, required that all agencies post at least three high-value data sets online and register them on Data.gov within 45 days
 - OPEN Government Data Act, as part of the Foundations for Evidence Based Policymaking Act (2019)

Open Data in France

- France at the forefront of Open Data in Europe:
 - Légifrance 1999
- Legal framework:
 - "The society has the right of requesting account from any public agent of its administration." (Declaration of rights of man and of the citizen of 1789)
 - Law on the liberty of access to administrative documents (1978)
 - Euopean directove 2003 + French Law 2005 + Decree 2011
 - Bill on a Digital Republic (2016)
 - The law on Energy Transition (2015)
- 2014: Chief Data Officer in the French public administration

Open Data in Europe

The European Data Portal: Opening up Europe's public data

data.europa.eu/europeandataportal

Open Data, Open Content, and Open Knowledge

The Open Definition

The Open Definition sets out principles that define "openness" in relation to data and content.

It makes **precise** the meaning of "open" in the terms "**open data**" and "**open content**" and thereby ensures **quality** and encourages **compatibility** between different pools of open material.

It can be summed up in the statement that:

"Open means **anyone** can **freely access, use, modify, and share** for **any purpose** (subject, at most, to requirements that preserve provenance and openness)."

Put most succinctly:

"Open data and content can be **freely used**, **modified**, **and shared** by **anyone** for **any purpose**"

http://opendefinition.org/

Open Work

1. Open License or Status

The work must be in the public domain or provided under an open license

2. Access

The **work** *must* be provided as a whole and at no more than a reasonable one-time reproduction cost, and *should* be downloadable via the Internet without charge.

3. Machine Readability

The **work** *must* be provided in a form readily processable by a computer and where the individual elements of the work can be easily accessed and modified.

36

4. Open Format

The work must be provided in an open format.

http://opendefinition.org/

Open data market size

- €184.45 billion open data market size in 2019
- €199.51 €334.20 billion open data market size forecast for 2025

Open data employment

- 1.09 million open data employees in 2019
- 1.12 1.97 million open data employees forecast for 2025

Open data potential per sector

- · 15.7% growth expected from high impact and high potential sectors
- · High impact:

For details on calculations and assumptions see corresponding sections.

Efficiency gains

- Saving lives, e.g. 54 202 thousand lives saved by faster emergency response
- Saving time, e.g. 27 million hours saved in public transport
- Saving the environment, e.g. 5.8 Mtoe* saved by reducing household energy consumption
- Improving language services with open data, e.g. by increasing machine translation

Cost savings

- Saving healthcare costs, e.g. €312 €400 thousand due to faster first aid by bystanders
- Saving labour costs, e.g. €13.7 €20 billion by reducing time spent in traffic
- Saving costs on energy bills, e.g. €79.6 billion due to more solar energy production
- Saving public sector costs, e.g. €1.1 billion by lower translation costs

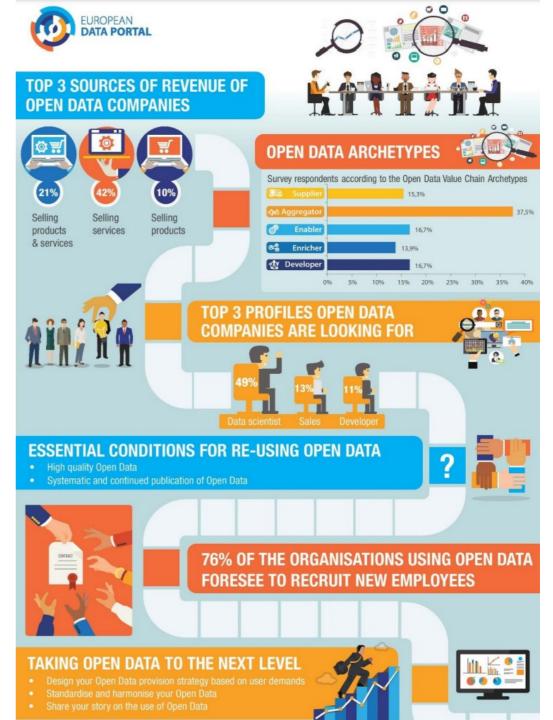
Open data in organisations

- 49% of data used by surveyed organisations is open data and 77% of organisations plan to use more data
- · 46% of organisations' revenues are impacted by open data and 73% of organisations expect the impact to increase
- 70% of surveyed organisations create data internally, of which 58% publish some of it as open data

https://data.europa.eu/sites/default/files/the-economic-impact-of-open-data.pdf

* Million tonnes of oil equivalent

For details on calculations and assumptions see corresponding sections.



Re-using Open Data

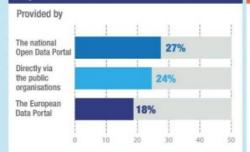
A study on companies transforming Open Data into economic & societal value

Re-using Open Data

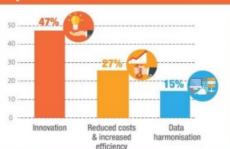
A study on companies transforming Open Data into economic & societal value

Top 3 most used Open Data domains

Statistical



Most often combined Open Data categories



Other Open Data categories used

Top 3 platforms to access **Open Data**

Main benefits of working with Open Data

Data Interoperability and Semantics

Part 4. The value of data

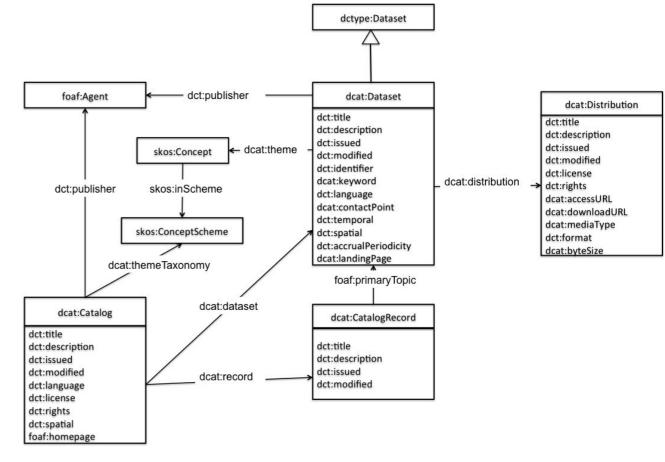
Part 4.5. Machine-actionability of data increases its value

FAIR Principles

The FAIR principles emphasize machine-actionability (i.e., the capacity of computational systems to find, access, interoperate, and reuse data with none or minimal human intervention) because humans increasingly rely on computational support to deal with data as a result of the increase in volume, complexity, and creation speed of data.

Source: Australian National Data Service (ANDS)

Example of standards for Metadata


Dublin Core

schema.org

Documentation

Here is some of the documentation available on this site:

- . Getting Started: A simple introduction to microdata and using schema.org for marking up your site
- Schemas: The actual schemas, arranged in a hierarchy, with a page for each item in the schema.
- The full type hierarchy: The full type hierarchy, in a single file.
- Frequently asked questions
- . Data model: a brief note on the data model used, etc.
- . Extension Mechanism: The extension mechanism that can be used to extend the schemas
- Schema.org Discussion Group: Forum for finding answers to questions, etc.
- Feedback form: Please give us feedback, report bugs, etc.

Data Catalog Vocabulary (DCAT) - Version 2 W3C Recommendation 04 February 2020

- Demo Dublin core or schema.org in web pages
- Demo DCAT for open data portal catalogs

Data Interoperability and Semantics

< Part 4. The value of data >

Maxime Lefrançois https://maxime-lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/data