
ICM M-INFO and M1 CPS2 Tutorial 1

 1/6

ICM – Computer Science Major
M1 Cyber Physical and Social Systems

Course unit on Data Interoperability and Semantics

Tutorial 1

1) Bluetooth Mesh Model

The definitions below are extracts of a Bluetooth standard. Complete the tables.

Bluetooth Mesh Model specification v1.0.1 Section 3.1.6.1 Generic Battery Level (modified)
The Generic Battery Level state is a value ranging from 0 percent through 100 percent. The values must
be divided by two (ex., 0x03 stands for 1.5 %). Values above 0xC8 (100 %) are forbidden.

 encoded decoded

8-bit unsigned integer
 (UINT8)

0xA7 (hexa)

UINT8 0b01010110 (binary)

Bluetooth Mesh Model specification v1.0.1 Section 3.1.7.6 Local Altitude
The Local Altitude field determines the altitude of the device relative to the Generic Location Global
Altitude. This is a 16-bit signed integer in decimeters. The valid range is from -32768 decimeters
(0x8000) through 0 decimeters (0x0000) up to 32765 decimeters (0x7FFD).

The following formula can be used to decode data: 𝐵2𝑇(𝑋) = −𝑥𝑤−1 ∙ 2
𝑤−1 + ∑ 𝑥𝑖 ∙ 2

𝑖𝑤−2
𝑖=0

 encoded decoded

INT16 - Big Endian (AB) 0x8001

INT16 - Little Endian (BA) 0x8001

2) IEEE 754

Decode the following hexadecimal strings using the Single precision IEEE 754 floating-point

standard:

 a) 0x3F000000

b) 0x44800000

Encode the following numbers using the Single precision IEEE 754 floating-point standard:

 c) -3.0

d) 24.0

3) UTF-8

Convert the following strings to UTF-8:

a) cs

b) ¥

c) €

d) 😃

ICM M-INFO and M1 CPS2 Tutorial 1

 2/6

4) CBOR

Below is a document encoded using the Concise Binary Object Representation.

Write a JSON equivalent of this document.

Spaces and new lines in the representation are just there to help you.

82 A3 61 76 FA 3F800000 62 6363 63 455552 62 6373 63 E282AC

 A3 61 76 FA 40F80000 62 6363 63 434E59 62 6373 62 C2A5

5) Base32 decoding

Below is the RFC 4648 Base32 Alphabet

Decode the following string: JVSWK5BAJJXWKICAGRYG2II=

Sequence of values:

Sequence of 5 bits:

Decoded string:

6) CRLF

Different OSs represent ends of line differently.

Microsoft Windows uses CRLF, Unix uses only LF, Classic MacOS used CR, then LF since

Mac OS X.

a) What is the full name of CR and LF?

b) What are their ASCII codes?

c) With what escape characters can these characters be included in a JSON string?

d) Why is it problematic that different OSs use different end-of-line characters ?

Appendix A: Single precision IEEE 754 floating-point standard

As an example, the value for number 0xbfc00000 is -1.5

ICM M-INFO and M1 CPS2 Tutorial 1

 3/6

Appendix B: UTF-8 Encoding

UTF-8 encodes code points in one to four bytes, depending on the value of the code point. In the
following table, the x characters are replaced by the bits of the code point:

Code point ↔ UTF-8 conversion

First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4

U+0000 U+007F 0xxxxxxx

U+0080 U+07FF 110xxxxx 10xxxxxx

U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The first 128 code points (ASCII) need one byte. The next 1,920 code points need two bytes to
encode, which covers the remainder of almost all Latin-script alphabets, and also IPA
extensions, Greek, Cyrillic, Coptic, Armenian, Hebrew, Arabic, Syriac, Thaana and N'Ko alphabets, as
well as Combining Diacritical Marks. Three bytes are needed for the remaining 61,440 code points of
the Basic Multilingual Plane (BMP), including most Chinese, Japanese and Korean characters. Four
bytes are needed for the 1,048,576 code points in the other planes of Unicode, which
include emoji (pictographic symbols), less common CJK characters, various historic scripts,
and mathematical symbols.

A "character" can take more than 4 bytes because it is made of more than one code point. For
instance a national flag character takes 8 bytes since it is "constructed from a pair of Unicode scalar
values" both from outside the BMP.

Encoding process

In these examples, character ‘|’ indicate how bits from the code point are separated and distributed
among the UTF-8 bytes. Additional bits added by the UTF-8 encoding process are underlined.

1. The Unicode code point for the euro sign € is U+20AC.

2. As this code point lies between U+0800 and U+FFFF, this will take three bytes to encode.

3. Hexadecimal 20AC is binary 0010 | 0000 10|10 1100. The two leading zeros are added because a

three-byte encoding needs exactly sixteen bits from the code point.

4. Because the encoding will be three bytes long, its leading byte starts with three 1s, then a 0 (1110...)

5. The four most significant bits of the code point are stored in the remaining low order four bits of this byte

(11100010), leaving 12 bits of the code point yet to be encoded (...0000 10|10 1100).

6. All continuation bytes contain exactly six bits from the code point. So the next six bits of the code point are

stored in the low order six bits of the next byte, and 10 is stored in the high order two bits to mark it as a

continuation byte (so 10000010).

7. Finally the last six bits of the code point are stored in the low order six bits of the final byte, and

again 10 is stored in the high order two bits (10101100).

The three bytes 11100010 10000010 10101100 can be more concisely written in hexadecimal,

as E2 82 AC.

ICM M-INFO and M1 CPS2 Tutorial 1

 4/6

Appendix C: Some Unicode code points

Basic Latin Range: U+0000 – U+007F Latin-1 Supplement: U+0080 – U+00FF

ICM M-INFO and M1 CPS2 Tutorial 1

 5/6

Currency Symbols U+20A0 – U+20C0 Emoji symbols U+1F600 – U+1F64F

ICM M-INFO and M1 CPS2 Tutorial 1

 6/6

Appendix D: RFC 8949 - Concise Binary Object Representation (CBOR)

Concise Binary Object Representation (CBOR) is a binary data serialization format loosely based on
JSON authored by C. Bormann. Like JSON it allows the transmission of data objects that contain
name–value pairs, but in a more concise manner. This increases processing and transfer speeds at
the cost of human readability. It is defined in IETF RFC 8949

Specification of the CBOR encoding
CBOR encoded data is seen as a stream of data items. Each data item consists of a header byte
containing a 3-bit type and 5-bit short count. This is followed by an optional extended count (if the
short count is in the range 24–27), and an optional payload.

For types 0, 1, and 7, there is no payload; the count is the value. For types 2 (byte string) and 3 (text
string), the count is the length of the payload. For types 4 (array) and 5 (map), the count is the number
of items (pairs) in the payload.

CBOR cheatsheet
Major type Description Binary Shorthand
0 an unsigned integer 000_xxxxx unsigned(#)
1 a negative integer 001_xxxxx negative(#-1)
2 a byte string 010_xxxxx bytes(n)
3 a text string (UTF-8) 011_xxxxx text(n)
4 an array of data items 100_xxxxx array(n)
5 a map of pairs of data items 101_xxxxx map(n)
7 Floating-point numbers and values with no content 111_xxxxx simple(v)

1 For negative(#-1), # represents the negative value minus 1. For example, negative(4) represents a value of -5.
5 For map(n), n represents number of key/value pairs.

Unsigned integer
Number Hex
0 .. 15 00 .. 0F
16 .. 23 10 .. 17
24 .. 255 18 18 .. 18 FF
256 .. 65535 19 0100 .. 19 FFFF

Negative integer
Number Hex
-1 .. -16 20 .. 2F
-17 .. -24 30 .. 37
-25 .. -256 38 18 .. 38 FF
-257 .. -65536 39 0100 .. 39 FFFF

Array
Length Hex
0 .. 15 80 .. 8F
16 .. 23 90 .. 97
24 .. 255 98 18 .. 98 FF
256 .. 65535 99 0100 .. 99 FFFF
Indefinite 9F
Length represents number of key/value pairs.

Map
Length Hex
0 .. 15 A0 .. AF
16 .. 23 B0 .. B7
24 .. 255 B8 18 .. B8 FF

256 .. 65535 B9 0100 .. B9 FFFF
Indefinite BF
Length represents number of key/value pairs.

Floating point numbers and values with no content
5-Bit Value Semantics
20 false
21 true
22 null
23 undefined
25 IEEE 754 Half-Precision Float (16 bits follow)
26 IEEE 754 Single-Precision Float (32 bits
follow)
27 IEEE 754 Double-Precision Float (64 bits
follow)
31 "break" stop code for indefinite-length items

Examples:

As JSON:

{
 "t":2,
 "h":null
}

As CBOR:

A2 # map(2)
 61 # text(1)
 74 # "t"
 02 # unsigned(2)
 61 # text(1)
 68 # "h"
 F6 # primitive(22)

