
Software Engineering

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Engineering

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Part 1 – Introduction

3

Objectives of this course

The aim of this session is for you to learn about Software Engineering

Software engineering is the systematic application of engineering approaches to the
development of software.
A software engineer is a person who applies the principles of software engineering to design,
develop, maintain, test, and evaluate computer software. The term programmer is sometimes
used as a synonym, but may also lack connotations of engineering education or skills.

— Wikipedia contributors - https://en.wikipedia.org/wiki/Software_engineering

4

60s-80s – The Software Crisis

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.

— Edsger Dijkstra, The Humble Programmer (EWD340), 1972 Turing Award Lecture

5

Fun story

source: http://catless.ncl.ac.uk/Risks/19.33.html%23subj1
6

Not fun story: Therac-25

https://catless.ncl.ac.uk/Risks/3.09.html
https://en.wikipedia.org/wiki/History_of_software_engineering#1965_to_1985:_The_software_crisis

7

Fun bugs

https://catless.ncl.ac.uk/Risks/3.44.html
8

Many more stories: RISKS Digest
Forum on Risks to the Public in Computers and Related Systems

ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator
http://catless.ncl.ac.uk/Risks/

Examples of Volume 1, 1985
Legend: ! = Loss of Life; * = Potentially Life-Critical; $ = Loss of Money/Equipment; S = Security/Privacy/Integrity Flaw

!S Arthritis-therapy microwaves set pacemaker to 214, killed patient (SEN 5 1)
*$ Mariner 18: aborted due to missing NOT in program (SEN 5 2)
*$ F18: plane crashed due to missing exception condition, pilot OK (SEN 6 2)
*$ El Dorado brake computer bug caused recall of all El Dorados (SEN 4 4)
* Second Space Shuttle operational simulation: tight loop upon cancellation of an attempted abort; required manual override (SEN 7 1)
* Gemini V 100mi landing err, prog ignored orbital motion around sun (SEN 9 1)
* F16 simulation: plane flipped over whenever it crossed equator (SEN 5 2)
* F16 simulation: upside-down F16 deadlock over left vs. right roll (SEN 9 5)
* SF BART train doors sometimes open on long legs between stations (SEN 8 5)
* IRS reprogramming cost USA interest on at least 1,150,000 refunds (SEN 10 3)
 Santa Clara prison data system (inmate altered release date) (SEN 10 1).
 Computerized time-bomb inserted by programmer (for extortion?) (10 3)
*$ Colorado River flooding in 1983, due to faulty weather data and/or faulty model; too much water was kept dammed prior to spring thaws.
$ 1979 AT&T program bug downed phone service to Greece for months (SEN 10 3)
 Quebec election prediction gave loser big win [1981] (SEN 10 2, p. 25-26)
 SW vendor rigs elections? (David Burnham, NY Times front page, 29 July 1985)
 Vancouver Stock Index lost 574 points over 22 months -- roundoff (SEN 9 1)

9

Productivity and quality issues in software ...
Due to:
 increase in size and complexity of systems
 shorter and shorter deadlines
 bigger and bigger teams, with multiple skills

Causing:
 Cost and Budget Overruns
 Property Damage
 Life and Death

10

Productivity and quality issues in software ...
Due to:
 increase in size and complexity of systems
 shorter and shorter deadlines
 bigger and bigger teams, with multiple skills

… called for the development of Software
Engineering

Software engineering is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of
engineering to software)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

Causing:
 Cost and Budget Overruns
 Property Damage
 Life and Death

11

Describes 15 Knowledge Areas (KAs)
in the field of software engineering

• Software Requirements
• Software Design
• Software Construction
• Software Testing
• Software Maintenance
• Software Configuration Management
• Software Engineering Management
• Software Engineering Process
• Software Engineering Models and Methods
• Software Quality
• Software Engineering Professional Practice
• Software Engineering Economics
• Computing Foundations
• Mathematical Foundations
• Engineering Foundations

SWEBOK: Software Engineering Body of
Knowledge ISO/IEC TR 19759:2015 (v1 in 2005)

get your version here: https://www.computer.org/education/bodies-of-knowledge/software-engineering

Software Engineering
Part 2 – Software Requirements

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/softeng/

source: https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml

13

Software Requirement - definition

verifiable
• if possible: quantifiable
• verification at the individual level, or at the system level
• verification may be difficult or costly

may be prioritized (enables tradeoffs)

may have status values (enables project progress monitoring)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

14

Software Requirement - definition

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

15

Product and Process requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

product requirement
refinement of customer requirements into the developers' language, making implicit
requirements into explicit derived requirements

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

process requirement
constraint on the development of the software

example of product requirement: “The software shall verify that a student meets all prerequisites before he or she registers for a course”
example of process requirement: “The software shall be developed using a Agile process”

process requirements can be imposed by the dev organization,
the customer, a third party such as safety regulator

16

Functional and Nonfunctional
requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, …
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

17

Functional and Nonfunctional
requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, …
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

further classification of nonfunctional requirements:
performance, maintainability, safety, reliability, security, interoperability, …

18

Requirements process
includes i. elicitation, ii. analysis, iii.
specification, and iv. validation.

is initiated at the beginning of a project, and
refined throughout the life cycle of the project

requirements are configuration items. They can
be managed during the life cycle of the project

Software projects are critically vulnerable when the
requirements related activities are poorly performed.

Incremental and iterative requirements engineering process.
Source: Jin, Zhi. Environment modeling-based requirements engineering for software intensive systems .
Morgan Kaufmann, 2018. Chapter 1 - Requirements and Requirements Engineering

19

Requirements process – actors
users
will operate the software. Heterogenous goup involving people with different roles

customers
those who commissioned the software or who represent the target market

market analyst
for mass-market software, marketing people act as proxy customers

regulators
impose requirements of the regulatory authorities (ex, banking, public transport, utilitie)

software engineers
legitimate interest in optimizing the actual development time and costs

tradeoffs need to be negotiated
see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

20

Requirements process – i. elicitation

Sources
• goals of the software
• domain knowledge
• stakeholders
• business rules
• operational environment
• organizational environment

Elicitation techniques
• interviews
• scenarios
• prototypes
• facilitated meetings
• observation
• user stories https://en.wikipedia.org/wiki/User_story

• …

“As a <role>, I want <goal/desire> so that <benefit>.”

21

Requirements process – ii. analysis

Classify the requirements
• functional/nonfunctional
• source (e.g., user, regulation)

• on the product or the process
• priority (mandatory, highly desirable, desirable, optional)

• scope (global, narrow)

• Volatility/stability

22

Requirements process – ii. analysis

exemple: UML Use case diagrams
source: https://www.uml-diagrams.org/use-case-diagrams.html

Conceptual models
For example with the Unified Modeling Language (UML)

• use case diagrams

• communication diagrams

• state machine diagrams

• …

23

Requirements process – ii. analysis

exemple: UML Communication diagrams
source: https://www.uml-diagrams.org/communication-diagrams.html

Conceptual models
For example with the Unified Modeling Language (UML)

• use case diagrams

• communication diagrams

• state machine diagrams

• …

24

Requirements process – ii. analysis

exemple: UML state machine diagrams
source: https://www.uml-diagrams.org/protocol-state-machine-diagrams.html

Conceptual models
For example with the Unified Modeling Language (UML)

• use case diagrams

• communication diagrams

• state machine diagrams

• …

25

Requirements process – ii. analysis
Architectural Design
“point when the requirement process overlaps with the software/system design”

Requirement allocation
Requirements need to be allocated to the architecture/design component that will be
responsible for satisfying the requirement

Demonstrates that the requirement process is not only an upfront analysis task !

26

Requirements process – ii. analysis

Conflicts may arise …
• stakeholders require incompatible features
• incompatibilities between requirements and resources
• incompatibilities between functional and nonfunctional requirements
• …

Negotiation is important
• consult with the stakeholders instead of making unilateral decisions
• refine priorization
• estimate wisely cost and time
• keep traces the decisions

see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

27

Requirements process – ii. analysis

formal analysis

“application of mathematically rigorous techniques for the specification, development,

and verification of software and hardware systems”

 costly
 important for safety-critical or security-critical software/systems
 permits static validation (for example, absence of deadlocks)

Methods
logic calculi, formal languages, automata theory, discrete event dynamic system, program

semantics, type systems, algebraic datatypes

see for example https://en.wikipedia.org/wiki/Formal_methods

– What is formal method - https://shemesh.larc.nasa.gov/fm/fm-what.html

28

Requirements process – iii.
specification

specification (in software engineering)

“production of a document that can be systematically reviewed,

evaluated, and approved”

software requirements specification (SRS)

“structured collection of the essential requirements [functions,

performance, design constraints and attributes] of the software

and its external interfaces”

see also https://en.wikipedia.org/wiki/Software_requirements_specification

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

example organization of a SRS document
source: https://en.wikipedia.org/wiki/Software_requirements_specification

— IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation

29

Requirements process – iv. validation

see for example https://en.wikipedia.org/wiki/Formal_methods

requirement validation
“confirmation by examination that requirements (individually and as a set) define the right
system as intended by the stakeholders”

Techniques for requirement validation
• reviews
• inspections
• prototyping
• user manual development
• model validation
• requirements testing

– ISO/IEC/IEEE 29148:2011 Systems and software engineering — Life cycle processes — Requirements engineering

30

Software requirements tools

Detailed list here (see column « RM »)
https://en.wikipedia.org/wiki/List_of_requirements_engineering_tools

almost exclusively commercial tools

https://www.jamasoftware.com/solutions/software-development/

https://visuresolutions.com/

https://www.innoslate.com/requirements-management/

31
Breakdown of Topics for the Software Requirements KA. Source: SWEBOK V3

Software Engineering
Part 3 – The ISO/IEC 25010 System and software quality models

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

33

Software quality model (ISO/IEC
25010:2011)

software quality
degree to which a software product satisfies stated and implied needs when used under specified conditions

— ISO/IEC 25010:2011 System and software quality models

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

34

Quality model for AI systems (ISO/IEC
25059:2024) https://iso25000.com/index.php/en/iso-25000-standards/iso-25059

35

Software quality model (ISO/IEC
25010:2023)

software quality
degree to which the system satisfies the stated and implied needs of its various stakeholders, and thus provides value.

— ISO/IEC 25010:2011 System and software quality models

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

NEW!

NEW!

NEW!

MODIFIED

36

Evaluation process (ISO/IEC
25040:2011)

Five activities, each having different steps

https://iso25000.com/index.php/en/iso-25000-standards/iso-25040

