Software Engineering

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrangois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Objectives of this course

The aim of this session is for you to learn about Software Engineering

Software engineering is the systematic application of engineering approaches to the
development of software.

A software engineer is a person who applies the principles of software engineering to design,
develop, maintain, test, and evaluate computer software. The term programmer is sometimes
used as a synonym, but may also lack connotations of engineering education or skills.

— Wikipedia contributors - https://en.wikipedia.org/wiki/Software_engineering

Software Engineering

Part 1 — Introduction

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrangois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng

60s-80s - The Software Crisis

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.

— Edsger Dijkstra, The Humble Programmer (EWD340), 1972 Turing Award Lecture

Fun story

source: http://catless.ncl.ac.uk/Risks/19.33 html%23subil

https://catless.ncl.ac.uk/Risks/3.44.html

~ Public loo guilty of making nuisance calls

Nick Rothwell <nick@cassiel.com=>
21 Aug 1997 15:39:14 -0000

From *Computer Weekly* (UK), 215t August 1997,

A woman who was phoned repeatedly by a public lavatory asking her to
fill it with cleaning fluid had to ask BT to put a stop to the calls

The case is one of a growing number of nuisance calls generated by
programming errors

About 15% of all nuisance calls are caused by errors, most of which are
traceable to faulty programming, according to a BT spokesperson.

The mast common type of computer—controlled nuisance call is from soft
drink vending machines which need refilling. wrongly programmed fax
machines and modems are another cause of complaints.

In a recent case, a North Sea oil rig called the wrong number at regular
intervals to ask for a service, Potentially serious cases involve traffic
lights, boilers and hospital refrigerators.

"The calls are mainly silent, because they are intended for modems to pick
up. but some give a recorded message,” said a BT spokesman.

Nick Rothwell, CASSIEL http://www.cassiel.com
contemporary dance projects music synthesis and control

[Not a new story in RISKS, but it seems to be happening more often. PGN]

F-16 Problems (from Usenet net.aviation)

Bill Janssen <janssen@mcc.com=
Wed, 27 Aug 86 14:31:45 CDT

A friend of mine who works for General Dynamics here in Ft. Worth wrote some
of the cade for the F-16, and he is always telling me about some
neato-whiz-bang bug/feature they keep finding in the F-16:

0 Since the F-16 is a fly-by-wire aircraft, the computer keeps the pilot from
doing dumb things to himself. So if the pilot jerks hard over on the
joystick, the computer will instruct the flight surfaces to make a nice and
easy 4 or 5 G flip. But the plane can withstand a much higher flip than that.
So when they were 'flying' the F-16 in simulation over the equator, the
computer got confused and instantly flipped the plane over, killing the
pilot [in simulation]. And since it can fly forever upside down, it would
do so until it ran out of fuel

(The remaining bugs were actually found while flying, rather than in
simulation):

0 One of the first things the Air Force test pilots tried on an early F-16
was to tell the computer to raise the landing gear while standing still on
the runway. Guess what happened? Scratch one F-16. (my friend says there
is a new subroutine in the code called ‘wait_on_wheels' now...) [weight?]

0 The computer system onboard has a weapons management system that will
attempt to keep the plane flying level by dispersing weapons and empty

fuel tanks in a balanced fashion. So if you ask to drop a bomb, the

computer will figure out whether to drop a port or starboard bomb in order
to keep the load even. One of the early problems with that was the fact

that you could flip the plane over and the computer would gladly let you
drop a bomb or fuel tank. It would drop, dent the wing, and then roll off.

https://catless.ncl.ac.uk/Risks/3.09.html
htty kipedi

Not fun story: Therac-25

of _software. to_1985: The_software_crisis

Many more stories

MAN KILLED BY ACCIDENT WITH MEDICAL RADIATION
(excerpted from The Boston Globe, June 20, 1986, p. 1)
by Richard Saltos, Globe Staff

A series of accidental radiation overdoses from identical cancer therapy
machines in Texas and Georgia has left one person dead and two others with
deep burns and partial paralysis, according to federal investigators

Evidently caused by a flaw in the computer program controlling the highly
automated devices, the overdoses - unreported until now - are believed to
be the worst medical radiation accidents to date.

The malfunctions occurred once last year and twice in March and April of
this year in two of the Canadian-built linear accelerators, sold under the
name Therac 25.

Two patients were injured. one who died three weeks later, at the East
Texas Cancer Center in Tyler, Texas, and another at the Kennestone Regional
Oncology Center in Marietta, Ga.

The defect in the machines was a "bug” so subtle, say those familiar with
the cases, that although the accident occurred in June 1985, the problem
remained a mystery until the third, most serious accident occurred on April
11 of this year.

Late that night, technicians at the Tyler facility discovered the cause of
that accident and notified users of the device in other cities.

: RISKS Digest

Forum on Risks to the Public in Computers and Related Systems
ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator

http://catless.ncl.ac.uk,

Examples of Volume 1, 1985
Legend: ! = Loss of Life; * = Potentially Life-Critical;

= Loss of Money/Equipment;

isks,

= Security/Privacy/Integrity Flaw

IS Arthritis-therapy microwaves set pacemaker to 214, killed patient (SEN 5 1)

*$ Mariner 18: aborted due to missing NOT in program (SEN 5 2)

*$ F18: plane crashed due to missing exception condition, pilot OK (SEN 6 2)

*$ El Dorado brake computer bug caused recall of all El Dorados (SEN 4 4)

Second Space Shuttle operational simulation: tight loop upon cancellation of an attempted abort; required manual override (SEN 7 1)
Gemini V 100mi landing err, prog ignored orbital motion around sun (SEN 9 1)

F16 simulatio

upside-down F16 deadlock over left vs. right roll (SEN 9 5)

SF BART train doors sometimes open on long legs between stations (SEN 8 5)
IRS reprogramming cost USA interest on at least 1,150,000 refunds (SEN 10 3)

Santa Clara prison data system (inmate altered release date) (SEN 10 1).

Computerized time-bomb inserted by programmer (for extortion?) (10 3)

*
*
* F16 simulation: plane flipped over whenever it crossed equator (SEN 5 2)
*
*
*

*$ Colorado River flooding in 1983, due to faulty weather data and/or faulty model; too much water was kept dammed prior to spring thaws.
$ 1979 AT&T program bug downed phone service to Greece for months (SEN 10 3)

Quebec election prediction gave loser big win [1981] (SEN 10 2, p. 25-26)

SW vendor rigs elections? (David Burnham, NY Times front page, 29 July 1985)

Vancouver Stock Index lost 574 points over 22 months -- roundoff (SEN 9 1)

Productivity and quality issues in software ... Productivity and quality issues in software

Due to: Causing: Due to: Causing:

" increase in size and complexity of systems " Cost and Budget Overruns " increase in size and complexity of systems " Cost and Budget Overruns
" shorter and shorter deadlines " Property Damage " shorter and shorter deadlines " Property Damage

" bigger and bigger teams, with multiple skills " Life and Death " bigger and bigger teams, with multiple skills " Life and Death

called for the development of Software
Engineering

Software engineering is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of
engineering to software)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

9 10

iy 4w

How the project leader How the analyst designed it How the proﬂrammer wrote What the customer really
understoed it needed

SWEBOK: Software Engineering Body of
Knowledge

ISO/IEC TR 19759:2015 (v1 in 2005)

Describes 15 Knowledge Areas (KAs)
in the field of software engineering

‘..i SWE BO K® * Software Requirements
V3.0

+ Software Design How the customer explained
it
* Software Construction
* Software Testing source: led mhtmi
* Software Maintenance
* Software Configuration Management . °
* Software Engineering Management
* Software Engineering Process
Editors. * Software Engineering Models and Methods
Pierre Bourque * Software Quality .
Richard E. (Dick) Fairley _
* Software Engineering Professional Practice Part 2 — Software Reclu'rements

* Software Engineering Economics

Guide to the Software
Engineering Body of Knowledge

<9IEEE . X .
@, o = Computing Foundations ICM — Computer Science Major — Software Engineering - Part 1: Introduction
I . .
g Y * Mathematical Foundations M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
* Engineering Foundations Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/softeng/

get your version here: of. engineering

Software Requirement - definition

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

verifiable
* if possible: quantifiable
* verification at the individual level, or at the system level
* verification may be difficult or costly

may be prioritized (enables tradeoffs)

may have status values (enables project progress monitoring)

Product and Process requirements

product requirement

refinement of customer requirements into the developers' language, making implicit
requirements into explicit derived requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

process requirement
constraint on the development of the software

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

example of product requirement: “The software shall verify that a student meets all prerequisites before he or she registers for a course”
example of process requirement: “The software shall be developed using a Agile process”

process requirements can be imposed by the dev organization, -
the customer, a third party such as safety regulator :

see also blog post on functional vs t

Software Requirement - definition

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

Functional and Nonfunctional
requirements

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, ...
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

al-vs-non-functional-requirements/

Functional and Nonfunctional
requirements

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— |EEE 730-2014 |EEE Standard for Software Quality Assurance Processes, 3.2

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, ...

example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

further classification of nonfunctional requirements:
performance, maintainability, safety, reliability, security, interoperability, ...

see also blog post on functional vs httos: b onal-requirements;

Requirements process - actors

users
will operate the software. Heterogenous goup involving people with different roles

customers
those who commissioned the software or who represent the target market

market analyst
for mass-market software, marketing people act as proxy customers

regulators
impose requirements of the regulatory authorities (ex, banking, public transport, utilitie)

software engineers
legitimate interest in optimizing the actual development time and costs

tradeoffs need to be negotiated
see for example https: bbau.ac.in/dept/dit/TM pdf

19

Requirements proce

includes i. elicitation, ii. analysis, iii.
specification, and iv. validation.

is initiated at the beginning of a project, and
refined throughout the life cycle of the project

requirements are configuration items. They can
be managed during the life cycle of the project

Software projects are critically vulnerable when the
requirements related activities are poorly performed

SS

System Development Context

Need to map comect and close gaps

l Need to re-evaluate and re-model

Need to re-write

Elicitation * Analysis > Specification > Validation

Need to Clarify
Need to map complete gaj

Requirements Artifacts

Incremental and iterative requirements engineering process.
Source: Jin, Zh. Environment modeling-based requirements engineering for software intensive systems.
Morgan Kaufmann, 2018. Chapter 1 - Requirements and Requirements Engineering

Requirements process - i. elicitation

Sources
* goals of the software
* domain knowledge
* stakeholders
* business rules
* operational environment
* organizational environment

Elicitation techniques
* interviews
* scenarios
* prototypes
* facilitated meetings
* observation

a
2
>
g
H
=
&
£

PROTOTVPE

REQUIREMENT WORKSHO?S.

z
]
E
£
]
=
]
2
g
5
g
2

SURVEYS / QUESTIONNAIRE

® USEer StOries nips//enwikipedia ors/wiki/user story

“As a <role>, | want <goal/desire> so that <benefit>.”

Requirements process - ii. analysis

Classify the requirements
* functional/nonfunctional
® SOUICE (e, user, regulation)
* on the product or the process
. pri ority (mandatory, highly desirable, desirable, optional)

® SCOPE (global, narrow)
* Volatility/stability

Requirements process - ii. analysis

Conceptual models

For example with the Unified Modeling Language (UM
* use case diagrams

* communication diagrams

¢ state machine diagrams

diagram kind

lifeline

name of owning element

frame heading or enclosing namespace

diagram frame

~
= ¥
i ion Online Bookshop
:Inventory

guard

message
f 2.3 [ord 4 lete]:
order complete]

1.1: search()

sequence f‘ update_inventory()

expression iteration

lifeline gass

1.2 [interested): ”H’Q"f name

view_book() \ 4
—

1*: find_books()

1.3 [decided to buy]:

\
N\ iai
add_to_cart() lifeline

2: checkout()

selector

2.2 [not empty(cart)]:
* make_order()

sequénce
expression

-
lifeline: © uml-diagrams.org

exemple: UML Communication diagrams

source: https://www.uml-diagrams.org/communication-diagrams.html

23

Requirements process - ii. analysis

Conceptual models

For example with the Unified Modeling Language (UML)

use case diagrams
communication diagrams

state machine diagrams

actor

_—subject, system boundary

«Subsystemy

Checkout

«extend» 7
association Pl

multiplicity

extend relationship

\ £
N P @

\
Customer cincluden'\
include — Payment
relationship
- multiplicity Payment Service
use case

© uml-diagrams.org

Manage
" Users

exemple: UML Use case diagrams
source: https://www.uml-diagrams.org/use-case-diagrams.html 2

Requirements process - ii. analysis

Conceptual models

For example with the Unified Modeling Language (UML)

use case diagrams
communication diagrams

state machine diagrams

state machine User Account {protocol)

isUniqueld()]
createl

name protocol keyword
7 in protoco state machine

) transition with
nd trigger (operation)

New fisAccountDormant()] suspend/

isVerified()]

fisUniqueld(]
protocol state

(isSuspendRequested() suspend/

fisAccountDormant()] suspend/
Active Suspended
[isResumeRequested()] resume!

[isCancelRequested()]
cancal/

protocol state —
with an invariant

uml diagrams.org

exemple: UML state machine diagrams
source: https://www.uml-di g/protocol-state hine-di htmly

Requirements process - ii. analysis Requirements process - ii. analysis

Architectural Design Conflicts may arise ...
“point when the requirement process overlaps with the software/system design” « stakeholders require incompatible features

Requirement allocation * incompatibilities between requirements and resources

Requirements need to be allocated to the architecture/design component that will be * incompatibilities between functional and nonfunctional requirements
responsible for satisfying the requirement .

Demonstrates that the requirement process is not only an upfront analysis task ! Negotiation is importa nt

* consult with the stakeholders instead of making unilateral decisions
* refine priorization

* estimate wisely cost and time

* keep traces the decisions

see for example https bbau.ac.in/dept/dit/T! odf

Requirements process -
specification

Requirements process - ii. analysis

formal analysis specification (in software engineering)
“ . . .
“application of mathematically rigorous techniques for the specification, development, production of a document that can be systematically reviewed,
”
and verification of software and hardware systems” evaluated, and approved
~ What is formal method - https://shemesh.larc.nasa.gov/fm/fm-what.html — ISO/IECTR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)
v costly software requirements specification (SRS)
v important for safety-critical or security-critical software/systems “structured collection of the essential requirements [functions,

\/
permits static validation (for example, absence of deadlocks) performance, design constraints and attributes] of the software

and its external interfaces”
Methods — IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation
logic calculi, formal languages, automata theory, discrete event dynamic system, program
semantics, type systems, algebraic datatypes

‘example organization of a SRS document 28
source: hitos://en wikiped requirements_specification

see for example https://en.wikipedi wiki/Formal_methods see also ht n.wikipedi

Requirements process - iv. validation

requirement validation
“confirmation by examination that requirements (individually and as a set) define the right
system as intended by the stakeholders”

—ISO/IEC/IEEE 29148:2011 Systems and software engineering — Life cycle processes — Requirements engineering

Techniques for requirement validation
* reviews

* inspections

* prototyping

¢ user manual development

* model validation

* requirements testing

29
see for example hittps://en.wikipedia.org/wiki/Formal_methods
Software
Requirements
Softw: Soft
Softare Requirements Requirements Requirements Requirements Requirements Practical Software
r Requirements S N A o A o = e Requirements
Process Elicitation Analysis Specification Validation Considerations
Fundamentals Tools
Definition of a . . System . Iterative Nature
Requirements Requirements - Requirements of the
[Software I Process Models Souees > Classification [Definition Reviews ™ Requi
Requirement ? N Document N Requirements
Process
L, Emdu$f and Lo o Elicitation |, Conceptual L, iys‘C““ . s, Change
rocess rocess Actors Teohiguss Modcling equirements rototyping 4’Manxgcmcnl
Requirements Specification
Functional and ! :“c'.’"““'m' Software Model Requirements
L i fontonctiond |, Process Support |, Design and L reisieinsiin Ly) |, Requirements
and Management Requirements. cificati Validation Attributes
Requirements Specification
Allocation
|, Emergent Process Quality Requirements L, Acceptance |, Requirements
Properties and Improvement Negotiation Tests Tracing
Quantifiable Formal Measuring
Requirements Analysis Requirements
System
Requirements

and Software

Requirements sreakdown of Top

Software requirements tools

almost exclusively commercial tools

Usor Requirements.

B Documents View

[NE

https://visuresolutions.com/

Detailed list here (see column « RM ») ps:) innoslat i 30

https://en.wikipedia.org/wiki/List of requirements engineering_tools

Software Engineering

Part 3 — The ISO/IEC 25010 System and software quality models

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Maxime Lefrangois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Software quality model (ISO/IEC

25010:2011)

software quality
degree to which a software product satisfies stated and implied needs when used under specified conditions
— ISO/IEC 25010:2011 System and software quality models

https://is025000.com/index.php/en/iso-25000-standards/iso-25010

QUALITY

r T 1 1 1 1 1 1

* Functional
Ci «Time
* Functional *Resource
Correctness Utilization
«»Functional + Capacity
Appropriateness
is025000.com

+ Appropriateness
Recognizability

+ Learnability

« Co-exi e &

» Confidentiality

* Maturity By

«User Error
Protection

*User Interface
Aesthetics

* Accessibility

+ Interoperability

N

* Modularity
+ Reusability

+ Adaptability

«Fault Tolerance

+Recoverability eeLanIY,

« Testability

Software quality model (ISO/IEC

25010:2023)

software q

uality

https://is025000.com/index.php/en/iso-25000-standards/iso-25010

degree to which the system satisfies the stated and implied needs of its various stakeholders, and thus provides value.
— ISO/IEC 25010:2011 System and software quality models

T — P
N) N A —
e
FUNCTIONAL TIME BEHAVIOUR CO-EXISTENCE APPROPRIATENESS = FAULTLESSNESS CONFIDENTIALITY MODULARITY ADAPTABILITY OPERATIONAL
COMPLETENESS RECOGNIZABILITY CONSTRAINT
RESOURCE INTEROPERABILITY AVAILABILITY INTEGRITY REUSABILITY SCALABILITY
FUNCTIONAL UTILIZATION LEARNABILITY
CORRECTNESS FAULT TOLERANCE NON-REPUDIATION | ANALYSABILITY INSTALLABILITY IDENTIFICATION
CAPACITY OPERABILITY
FUNCTIONAL RECOVERABILITY ACCOUNTABILITY MODIFIABILITY REPLACEABILITY FAIL SAFE
APPROPRIATENESS USER ERROR
PROTECTION AUTHENTICITY TESTABILITY HAZARD WARNING
USER ENGAGEMENT! RESISTANCE SAFE INTEGRATION
MODIFIED
INCLUSIVITY
USER ASSISTANCE
SELF-
DESCRIPTIVENESS
iS025000.com N

Quality model for Al systems (ISO/IEC
25059:2024)

https://is025000.com/index.php/en/iso-25000-standards/iso-25059

Al system product

quality
Functional | | Performance | | comparibility Usability Reliability Security | |Maintainability| | Portability
suitability efficiency
Functional | [Time behaviour] | Co-existence | [Appropriateness|| Maturity | [Confidentiality| | Modularity || Installability
leteness recognisabili
COMPIELENESS | | Resource | finter 5 Y| Availability Integrity Reusability | | Replaceability
Functional utilisation Learnabiility
correctness ™ Fault tolerance| [Non-r
Capacity Operability)
Functional Recoverability untability
hppropriatene: User error T i
PP & protection Robustnessa | | Authenticity Testability
Fimetiong] User interface
; a ntervenability
adapbilicy aesthetics
Accessibility
User
contrallability *
Transparency * 34

Define the evaluation

Design the evaluation

Plan the evaluation

Execute the evaluation

Conclude the evaluation

Evaluation process (ISO/IEC
25040:2011)

https://is025000.com/index.php/en/iso-25000-standards/iso-25040

Five activities, each having different steps

»

Activity 1: Define the evaluation

The first step in the evaluation process is 1o define the scope by establishing the purpose,
evaluation criteria, target entities, and other relevant factors

Task 1.1: Establish the purpose

The goal of this task is to define the purpose of the quality evaluation (evaluate suitabilty 1o a
specific context of use, evaluate qualitfication to a quality standard, check requirements
satisfaction, evaluate for suitability to the market, etc.).

Task 1.2: Identify target entities
The goal of this task is to identify all target entities needed for the evaluation.
Task 1.3:Define quality evaluation criteria

The quality evaluation criteria shall be defined or identified. Quality evaluation criteria are a set of
specific quality requirements used to evaluate the quality of the target entities. and can include
factors such as functional suitability, reliability, performance efficiency, compatibilty, interaction
capability, maintainability, flexibility, security, safety, of their subcharacteristics

Task 1.4: Define requirements for the rigor of evaluation

The rigor (thoroughness, precision, and strictness) of the evaluation shall be defined in order fo
ensure the accuracy, reliability, and validity of the results

