Software Engineering

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

https://maxime.lefrancois.info/
https://ci.mines-stetienne.fr/i2si/softeng/

Software Engineering

Part 1 — Introduction

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

https://maxime.lefrancois.info/
https://ci.mines-stetienne.fr/i2si/softeng/

Objectives of this course

The aim of this session is for you to learn about Software Engineering

Software engineering is the systematic application of engineering approaches to the
development of software.

A software engineer is a person who applies the principles of software engineering to design,
develop, maintain, test, and evaluate computer software. The term programmer is sometimes
used as a synonym, but may also lack connotations of engineering education or skills.

— Wikipedia contributors - https://en.wikipedia.org/wiki/Software_engineering

60s-80s - The Software Crisis

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all;, when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.

— Edsger Dijkstra, The Humble Programmer (EWD340), 1972 Turing Award Lecture

Fun story

source: http://catless.ncl.ac.uk/Risks/19.33.html%23subjl

Public loo guilty of making nuisance calls
Nick Rothwell <nick@cassiel.com=
21 Aug 1997 15:39:14 -0000

From *Computer Weekly* (UK), 21st August 1997:

A woman who was phoned repeatedly by a public lavatory asking her to
fill it with cleaning fluid had to ask BT to put a stop to the calls.

The case is one of a growing number of nuisance calls generated by
programming errors.

About 15% of all nuisance calls are caused by errors, most of which are
traceable to faulty programming, according to a BT spokesperson.

The most common type of computer-controlled nuisance call is from soft
drink vending machines which need refilling. Wrongly programmed fax
machines and modems are another cause of complaints.

In a recent case, a North Sea oil rig called the wrong number at regular
intervals to ask for a service. Potentially serious cases involve traffic

lights, boilers and hospital refrigerators.

"The calls are mainly silent, because they are intended for modems to pick
up. but some give a recorded message,” said a BT spokesman.

Mick Rothwell, CASSIEL http://www.cassiel.com
contemporary dance projects music synthesis and contraol

[Mot a new story in RISKS, but it seems to be happening more often. PGN]

http://catless.ncl.ac.uk/Risks/19.33.html%23subj1

Not fun story: Therac-25

https://catless.ncl.ac.uk/Risks/3.09.html
https://en.wikipedia.org/wiki/History of software engineering#1965 to 1985: The software crisis

MAMN KILLED BY ACCIDENT WITH MEDICAL RADIATION
(excerpted from The Boston Globe, June 20, 1986, p. 1)
by Richard Saltos, Globe Staff

A series of accidental radiation overdoses from identical cancer therapy
machines in Texas and Georgia has left one person dead and two others with
deep burns and partial paralysis, according to federal investigators.

Evidently caused by a flaw in the computer program controlling the highly
automated devices, the overdoses - unreported until now - are believed to
be the worst medical radiation accidents to date.

The malfunctions occurred once last year and twice in March and April of
this year in two of the Canadian-built linear accelerators, sold under the
name Therac 25.

Two patients were injured, one who died three weeks later, at the East
Texas Cancer Center in Tyler, Texas, and another at the Kennestone Regional
Oncology Center in Marietta, Ga.

The defect in the machines was a "bug" so subtle, say those familiar with
the cases, that although the accident occurred in June 1985, the problem
remained a mystery until the third, most serious accident accurred on April
11 of this year.

Late that night, technicians at the Tyler facility discovered the cause of
that accident and notified users of the device in other cities.

https://catless.ncl.ac.uk/Risks/3.09.html
https://en.wikipedia.org/wiki/History_of_software_engineering#1965_to_1985:_The_software_crisis

https://catless.ncl.ac.uk/Risks/3.44.html

F-16 Problems (from Usenet net.aviation)

Bill janssen <janssen@mcc.com=
Wed, 27 Aug 86 14:31:45 CDT

A friend of mine who works for General Dynamics here in Ft. Worth wrote some
of the code for the F-16, and he is always telling me about some
neato-whiz-bang bug/feature they keep finding in the F-16:

0 Since the F-16 is a fly-by-wire aircraft, the computer keeps the pilot from
doing dumb things to himself. 5o if the pilot jerks hard over on the
joystick, the computer will instruct the flight surfaces to make a nice and
easy 4 or 5 G flip. But the plane can withstand a much higher flip than that.
50 when they were 'flying’ the F-16 in simulation over the equator, the
computer got confused and instantly flipped the plane over, killing the
pilot [in simulation]. And since it can fly forever upside down, it would
do so until it ran out of fuel.

(The remaining bugs were actually found while flying, rather than in
simulation):

0 One of the first things the Air Force test pilots tried on an early F-16
was to tell the computer to raise the landing gear while standing still on
the runway. Guess what happened? Scratch one F-16. (my friend says there
is a new subroutine in the code called 'wait_on_wheels' now...) [weight?]

0 The computer system onboard has a weapons management system that will
attempt to keep the plane flying level by dispersing weapons and empty
fuel tanks in a balanced fashion. So if you ask to drop a bomb, the
computer will figure out whether to drop a port or starboard bomb in order
to keep the load even. One of the early problems with that was the fact
that you could flip the plane over and the computer would gladly let you
drop a bomb or fuel tank. It would drop, dent the wing, and then roll off.

https://catless.ncl.ac.uk/Risks/3.44.html

Many more stories: RISKS Digest

Forum on Risks to the Public in Computers and Related Systems
ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator
http://catless.ncl.ac.uk/Risks/

Examples of Volume 1, 1985
Legend: ! = Loss of Life; * = Potentially Life-Critical; S = Loss of Money/Equipment; S = Security/Privacy/Integrity Flaw

IS Arthritis-therapy microwaves set pacemaker to 214, killed patient (SEN 5 1)
*S Mariner 18: aborted due to missing NOT in program (SEN 5 2)
*S F18: plane crashed due to missing exception condition, pilot OK (SEN 6 2)
*S El Dorado brake computer bug caused recall of all El Dorados (SEN 4 4)
Second Space Shuttle operational simulation: tight loop upon cancellation of an attempted abort; required manual override (SEN 7 1)
Gemini V 100mi landing err, prog ignored orbital motion around sun (SEN 9 1)
F16 simulation: plane flipped over whenever it crossed equator (SEN 5 2)
F16 simulation: upside-down F16 deadlock over left vs. right roll (SEN 9 5)
SF BART train doors sometimes open on long legs between stations (SEN 8 5)
IRS reprogramming cost USA interest on at least 1,150,000 refunds (SEN 10 3)
Santa Clara prison data system (inmate altered release date) (SEN 10 1).
Computerized time-bomb inserted by programmer (for extortion?) (10 3)
*S Colorado River flooding in 1983, due to faulty weather data and/or faulty model; too much water was kept dammed prior to spring thaws.
S 1979 AT&T program bug downed phone service to Greece for months (SEN 10 3)
Quebec election prediction gave loser big win [1981] (SEN 10 2, p. 25-26)
SW vendor rigs elections? (David Burnham, NY Times front page, 29 July 1985)
Vancouver Stock Index lost 574 points over 22 months -- roundoff (SEN 9 1)

* ¥ ¥ ¥ ¥ *

http://catless.ncl.ac.uk/Risks/

Productivity and quality issues in software ...

Due to: Causing:
" increase in size and complexity of systems ® Cost and Budget Overruns
" shorter and shorter deadlines " Property Damage

" bigger and bigger teams, with multiple skills " Life and Death

Productivity and quality issues in software ...

Due to: Causing:

" increase in size and complexity of systems ® Cost and Budget Overruns
" shorter and shorter deadlines " Property Damage

" bigger and bigger teams, with multiple skills " Life and Death

... called for the development of Software
Engineering

Software engineering is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of
engineering to software)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

SWEBOK: Software Engineering Body of

Knowledge

s SWEBOK™

V3.0

Guide to the Software
Engineering Body of Knowledge

Editors

Pierre Bourque
Richard E. (Dick) Fairley

< IEEE
[EEE@)computer society

get your version here: https://www.computer.org/education/bodies-of-knowledge/software-engineering

ISO/IEC TR 19759:2015 (v1 in 2005)

Describes 15 Knowledge Areas (KAs)
in the field of software engineering

* Software Requirements

* Software Design

* Software Construction

* Software Testing

* Software Maintenance

* Software Configuration Management

* Software Engineering Management

* Software Engineering Process

* Software Engineering Models and Methods
* Software Quality

* Software Engineering Professional Practice
* Software Engineering Economics

* Computing Foundations

* Mathematical Foundations

* Engineering Foundations

https://www.computer.org/education/bodies-of-knowledge/software-engineering

How the customer explained How the project leader How the analyst designed it How the programmer wrote W cu5tﬂmer really
it understood it it needed

i

source: https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml

Software Engineering

Part 2 — Software Requirements

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/softeng/

https://maxime.lefrancois.info/
https://ci.mines-stetienne.fr/cps2/softeng/
https://ci.mines-stetienne.fr/cps2/softeng/

Software Requirement - definition

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

verifiable
* if possible: quantifiable
* verification at the individual level, or at the system level
* verification may be difficult or costly

may be prioritized (enables tradeoffs)

may have status values (enables project progress monitoring)

Software Requirement - definition

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

Product and Process requirements

product requirement
refinement of customer requirements into the developers' language, making implicit
requirements into explicit derived requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

process requirement

constraint on the development of the software
— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

example of product requirement: “The software shall verify that a student meets all prerequisites before he or she registers for a course”
example of process requirement: “The software shall be developed using a Agile process”

0 process requirements can be imposed by the dev organization,
the customer, a third party such as safety regulator

Functional and Nonfunctional
requirements

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, ...
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

Functional and Nonfunctional
requirements

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, ...
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

0 further classification of nonfunctional requirements:
performance, maintainability, safety, reliability, security, interoperability, ...

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

Requirements process

includes i. elicitation, ii. analysis, iii.
specification, and iv. validation.

is initiated at the beginning of a project, and
refined throughout the life cycle of the project

requirements are configuration items. They can
be managed during the life cycle of the project

Software projects are critically vulnerable when the
N requirements related activities are poorly performed.

System Development Context

MNeed to map comect and close gaps

l Meead to re-evaluate and re-model

& Mead to re-write

Bequirements | Requirements > Fequirements N Requirements
Elicitation | Analysis Specification Validation

TM[—H—!d to Clarify

?Need to map complete gap

Requirements Artifacts

Incremental and iterative requirements engineering process.
Source: Jin, Zhi. Environment modeling-based requirements engineering for software intensive systems.
Morgan Kaufmann, 2018. Chapter 1 - Requirements and Requirements Engineering

18

Requirements process - actors

users
will operate the software. Heterogenous goup involving people with different roles

customers
those who commissioned the software or who represent the target market

market analyst
for mass-market software, marketing people act as proxy customers

regulators
impose requirements of the regulatory authorities (ex, banking, public transport, utilitie)

software engineers
legitimate interest in optimizing the actual development time and costs

tradeoffs need to be negotiated
see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

Requirements process - i. elicitation

Sources
* goals of the software

domain knowledge
stakeholders

business rules

operational environment
organizational environment

Elicitation techniques

BRAINSTORMING

DOCUMENT ANALYSIS

* interviews

° scenarios

* prototypes

* facilitated meetings
* observation

® user StOries hips:/enwikipedia.org/wiki/User story

FOCUS GROUP

INTERFACE ANALYSIS

INTERVIEWS

OBSERVATION

TECHNIQUES

PROCESS MODELING

PROTOTYPE

REQUIREMENT ELICITATION

REQUIREMENT WORKSHOPS

SURVEYS / QUESTIONNAIRE

“As a <role>, | want <goal/desire> so that <benefit>.”

20

https://en.wikipedia.org/wiki/User_story

Requirements process - ii. analysis

Classify the requirements
* functional/nonfunctional
® SOUICE (e, user reguiation)
on the product or the process

p rl O rlty (mandatory, highly desirable, desirable, optional)
¢ SCOpe (global, narrow)
Volatility/stability

Requirements process - ii

Conceptual models
For example with the Unified Modeling Language (UML)
* use case diagrams

* communication diagrams

state machine diagrams

. analysis

S subject, system boundary

1.;,',.
a«Subsystems»
Checkout
multiplicity , extend relationship
_ wextend» -
association ;“‘1_ -
actor \\ /_R
1. e
\':‘-“- ! Checkout ~f
""-\.____
\\—/ actor
mer . \ Clerk /
Custome «include» v
include —1 Payment -]i j i
relationship - -y
A
_ multiplicity Paymant Service
use case™
“u______ Manage
" Users

@ uml-diagrams.org

exemple: UML Use case diagrams

source: https://www.uml-diagrams.org/use-case-diagrams.htmi

Administrator

22

Requirements process - ii. analysis

Conceptual models
For example with the Unified Modeling Language (UM
* use case diagrams

* communication diagrams

state machine diagrams

frame heading

diagram kind -
- L

e

name of owning element
or enclosing namespace

v

dia_c_;ra_m frame

R .
interaction Online Emkshﬂp)

:Inventory

message

1.1: search()
sequence ﬂ
expression iteration

o 1* find_books()
lifeling

guard

%

\Pv
?‘2.3 [order complete]:
update_inventory()

1.2 [interested]:

view_book()
—

:0Online

1__ —
> Bookshop

+
—=

lifeline
name

N

class
name

b: Book

2: checkout()

\

2.2 [not empty(cart)):
* make_order()

N\

2.1: get_books()

sequence
expression

:Order

-:I——___H\
lifeline

1.3 [decided to buy]:
add to cart()

PN

LY
“ lifeline

selector

sccu &amer]:
Shopping Cart

© uml-diagrams.org

exemple: UML Communication diagrams

source: https://www.uml-diagrams.org/communication-diagrams.html|

23

Requirements process - ii. analysis

Conceptual models

For example with the Unified Modeling Language (UML)
* use case diagrams

* communication diagrams

* state machine diagrams

protocol state machine name . PVC'[CCC| keyword
- / indicates protocol state machine

™
+ #‘
state machine User Account {protocov initial peeudostate
J/
._"I__ protocol transition with
[isUniqueld()] precondition and trigger (operation)
create/ -

‘;,
| New [isfccountDormant()] suspend/
4 - J

[isVerified()] Protocol transition with
activate/ |——— precondition, trigger (operation),
[isUnigueld()] and postcondition

protocol state

\ N [isSuspendRequested()] suspend/

[isAccountDormant()] suspend/
Active Suspended
[isResumeRequested()] resume/

[isCancelRequested()]
cancel/

/

[isCancelRequested(}] [isPolicyViolated()]
cancel/ cancell

[isCancelRequested()] cancel/

\\
Closed

[hasNoBalanceDue()] [isPolicyViolated()] cancel/ /

protocol state —
with an invariant final state -
PR uml-diagrams.org

exemple: UML state machine diagrams
source: https://www.uml-diagrams.org/protocol-state-machine-diagrams.htmly

Requirements process - ii. analysis

Architectural Design
“point when the requirement process overlaps with the software/system design”

Requirement allocation

Requirements need to be allocated to the architecture/design component that will be
responsible for satisfying the requirement

Demonstrates that the requirement process is not only an upfront analysis task !

Requirements process - ii. analysis

Conflicts may arise ...
* stakeholders require incompatible features
* incompatibilities between requirements and resources
* incompatibilities between functional and nonfunctional requirements

Negotiation is important
* consult with the stakeholders instead of making unilateral decisions
* refine priorization
* estimate wisely cost and time
* keep traces the decisions

see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

Requirements process - ii. analysis

formal analysis
“application of mathematically rigorous techniques for the specification, development,

and verification of software and hardware systems”
— What is formal method - https://shemesh.larc.nasa.gov/fm/fm-what.html

v costly
v important for safety-critical or security-critical software/systems
v permits static validation (for example, absence of deadlocks)

Methods
logic calculi, formal languages, automata theory, discrete event dynamic system, program
semantics, type systems, algebraic datatypes

see for example https://en.wikipedia.org/wiki/Formal methods

https://en.wikipedia.org/wiki/Formal_methods

Requirements process -
specification

An example organization of an SRS is as follows:[%]

specification (in software engineering)
“production of a document that can be systematically reviewed,
evaluated, and approved”

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK) - oo mrsces
software requirements specification (SRS)
“structured collection of the essential requirements [functions,
performance, design constraints and attributes] of the software

and its external interfaces”

5. Portability

— IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation 5. Functional requirements
1. Functional partiticning
2 Funct

ption
6. Environment characteristics

3. Control de

1. Hardware
2. Peripherals
3. Users

7. Other

example organization of a SRS document
source: https://en.wikipedia.org/wiki/Software requirements specification

see also https://en.wikipedia.org/wiki/Software requirements specification

https://en.wikipedia.org/wiki/Software_requirements_specification
https://en.wikipedia.org/wiki/Software_requirements_specification

Requirements process - iv. validation

requirement validation
“confirmation by examination that requirements (individually and as a set) define the right
system as intended by the stakeholders”

—ISO/IEC/IEEE 29148:2011 Systems and software engineering — Life cycle processes — Requirements engineering

Techniques for requirement validation
* reviews

* inspections

* prototyping

* user manual development

* model validation

* requirements testing

see for example https://en.wikipedia.org/wiki/Formal methods

https://en.wikipedia.org/wiki/Formal_methods

Software requirements tools

almost exclusively commercial tools

| omgratnct Sysimm Sample Set 3 -
o :
T
a Pap— P S S —————
T ks ol o s oor i oo
s i S
& —— oy [eee—— s aemer pien Visure Requirements - [Surgical Imaging - System Engineering Project { ENG - System Engineers)< ems (16) “[REQS] User Requitement Speciicaion’] AL
oy S et bt P [Vs Pt o e e’ Ssx
. e e o
BN gy 40 ~eed Fom B ainencs of & e -
— BT e ERTE
o User Requirements
o ool e This docineat describes all user sequirements of the Lnagery Systen.
Mhe user requremeats are ofthe type:
P B Reo Commal Mt W B L * Marketing
Page |1 = SPEC I gons [Co reSAT Mode
Customer Requirements @ Documents View
https://www.jamasoftware.com/solutions/software-development/ s s e st of s £ & ——

Detailed list here (see column « RM »)
https://en.wikipedia.org/wiki/List of requirements

Tealth persoanct st b able b mancves th equipmeat whin the horpisd

§tnReq_Cust 00071
|4 umit lnad device, or TIT
!

Airtreaspe

D), is a container used to lo
I

Bi_o20
ool
A : 1o be transp
ontainer. Volume Linear dimensions. Remarks
e hase witth / overall width -
depth « heigh)
DL | 430m® | 1% /314=153=163em foontoursd, half width
(i) | (sLs/e2reaxe
07

red, hall width

Joantaur=d, half width,
dimension sceerding to

am (ame) and Lezan twalls).
d below

hich, depending o the

https://visuresolutions.com/

engineering tools

Eaisting Detumants.

1182 {3
Riscpieeernsnits Commers Reguaiverments Document

Sy Roenmerts Dicumert

= I Sy Veticie Firik et Narst
Froqurrey

= | ([T I}
[

Docurrant
—_— ; = :
- . =y Reguirements Document Test Plan Docurment

© Mew Document

Doumants - Sorted by Modified -

ERD FreSAT Enterprise Requinements

https://www.innoslate.com/requirements-management/

30

https://en.wikipedia.org/wiki/List_of_requirements_engineering_tools

Software

Requirements
Software : : : : ; : Software
; Requirements Requirements Requirements Requirements Requirements Practical i
— Requirements = o — . u . . i s — . . Requirements
Process Elicitation Analysis Specification Validation Considerations
Fundamentals Tools
Definition of a : : System . Iterative Nature
Requirements Requirements .. Requirements of the

> aeltwie — Process Models Sources Classification % Definaon Reviews K :

Requirement Document Requirements

Process
| £BEAEE I Elicitation Conceptual |, f T Change
rocess rocess Actors Techniques Modeling equirements rototyping Management

Requirements Specification

Functional and s g;c:imr::c;:zgal e Model Requirements
—» Nonfunctional dM PP ¢ —> R ‘ t = equiraments > Validation Atgibutes

Requitements and Managemen equirements Specification

Allocation

Emergent Process Quality Requirements Acceptance Requirements

Properties and Improvement Negotiation Tests Tracing

Quantifiable Formal Measuring

Requirements Analysis Requirements

System

Requirements

and Software
Requirements

Breakdown of Topics for the Software Requirements KA. Source: SWEBOK V3

Software Engineering

Part 3 — The ISO/IEC 25010 System and software quality models

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

https://maxime.lefrancois.info/
https://ci.mines-stetienne.fr/i2si/softeng/

Software quality model (ISO/IEC
25010:2011)

https://is025000.com/index.php/en/iso-25000-standards/iso-25010

software quality
degree to which a software product satisfies stated and implied needs when used under specified conditions

— ISO/IEC 25010:2011 System and software quality models

SOFTWAREPRODUCT

QUALITY

| | _ I e - . — — i - i | I

Inctiona Performance — — S— N— ——
Suitability fficiency Compatibility m Reliability m Maintainability Portability
* Appropriateness
* Functional Recognizability £ - . -
Completeness » Time Behaviour » Learnability « Maturity Confidentialty Modydsrty
Functonal . « Co-existence « Operability « Availability * Integrity * Reusability * Adaptability
b Edicis e " atice e E » Non-repudiation « Analysability « Installability
Correctness Utilization 2 Pt » Fault Tolerance
« Interoperability um e| 't°':f . - » Authenticity » Modifiability + Replaceability
= : = ; *User Interface * Recoverabili 2 .
E:gcrg;r?aa{eness Capacity Aesthetics « Accountability * Testability
’ * Accessibili
iIs025000.com -

33

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Quality model for AI systems (ISO/IEC
25059:2024)

https://is025000.com/index.php/en/iso-25000-standards/iso-25059

Al system product

quality
Functional Performance | | ¢ompatibility Usability Reliability Security Maintainability| | Portability
suitability efficiency
Functional Time behaviour| | Co-existence | |Appropriateness Maturity Confidentiality Modularity Installability
completeness recognisabili) . .
P Resource Interoperability B o Availability Integrity Reusability Replaceability
Functional utilisation Learnabiility
correctness m Fault tolerance| [Non-repudation| | Analysability Adaptability
Capacity Operability
Functional Recoverability | | Accountability Modifiability
: User error
pppropriateness protection Robiisthassd Authenticity Testability
Functional ;
adaptability @ User interface Intervenability 9
aesthetics
Accessibility
User
contrallability 2
Transparency @

34

https://iso25000.com/index.php/en/iso-25000-standards/iso-25059

Software quality model (ISO/IEC
25010:2023)

software quality
degree to which the system satisfies the stated and implied needs of its various stakeholders, and thus provides value.

https://is025000.com/index.php/en/iso-25000-standards/iso-25010

— ISO/IEC 25010:2011 System and software quality models

FUNCTIONAL
COMPLETENESS

FUNCTIONAL
CORRECTNESS

FUNCTIONAL
APPROPRIATENESS

TIME BEHAVIOUR

RESOURCE
UTILIZATION

CAPACITY

CO-EXISTENCE

INTEROPERABILITY

MODI Fl EDrUSER ENGAGEMENT

APPROPRIATENESS
RECOGNIZABILITY

LEARNABILITY

OPERABILITY

USER ERROR
PROTECTION

N

INCLUSIVITY
USER ASSISTANCE

SELF-

DESCRIPTIVENESS

FAULTLESSNESS

AVAILABILITY

FAULT TOLERANCE

RECOVERABILITY

CONFIDENTIALITY

INTEGRITY

NON-REPUDIATION

ACCOUNTABILITY

AUTHENTICITY

RESISTANCE

MODULARITY

REUSABILITY

ANALYSABILITY

MODIFIABILITY

TESTABILITY

ADAPTABILITY

SCALABILITY

INSTALLABILITY

REPLACEABILITY

OPERATIONAL
CONSTRAINT

RISK
IDENTIFICATION

FAIL SAFE

HAZARD WARNING

SAFE INTEGRATION

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

Evaluation process (ISO/IEC

25040:2011)

Five activities, each having different steps

https://is025000.com/index.php/en/iso-25000-standards/iso-25040

Define the evaluation

Design the evaluation

Plan the evaluation

Execute the evaluation

Conclude the evaluation

is025000.com

Activity 1: Define the evaluation

The first step in the evaluation process is to define the scope by establishing the purpose,
evaluation criteria, target entities, and other relevant factors.

Task 1.1: Establish the purpose

The goal of this task is to define the purpose of the quality evaluation (evaluate suitability to a
specific context of use, evaluate gualitfication to a quality standard, check requirements
satisfaction, evaluate for suitability to the market, etc.).

Task 1.2: Identify target entities
The goal of this task is to identify all target entities needed for the evaluation.
Task 1.3:Define quality evaluation criteria

The guality evaluation criteria shall be defined or identified. Quality evaluation criteria are a set of
specific quality requirements used to evaluate the guality of the target entities, and can include
factors such as functional suitability, reliability, performance efficiency, compatibility, interaction
capability, maintainability, flexibility, security, safety, or their subcharacteristics.

Task 1.4: Define requirements for the rigor of evaluation

The rigor (thoroughness, precision, and strictness) of the evaluation shall be defined in order to
ensure the accuracy, reliability, and validity of the results.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25040

	Software Engineering
	Software Engineering (2)
	Objectives of this course
	60s-80s – The Software Crisis
	Fun story
	Not fun story: Therac-25
	Fun bugs
	Many more stories: RISKS Digest
	Productivity and quality issues in software ...
	Productivity and quality issues in software ... (2)
	SWEBOK: Software Engineering Body of Knowledge
	Software Engineering (3)
	Software Requirement - definition
	Software Requirement - definition (2)
	Product and Process requirements
	Functional and Nonfunctional requirements
	Functional and Nonfunctional requirements (2)
	Requirements process
	Requirements process – actors
	Requirements process – i. elicitation
	Requirements process – ii. analysis
	Requirements process – ii. analysis (2)
	Requirements process – ii. analysis (3)
	Requirements process – ii. analysis (4)
	Requirements process – ii. analysis (5)
	Requirements process – ii. analysis (6)
	Requirements process – ii. analysis (7)
	Requirements process – iii. specification
	Requirements process – iv. validation
	Software requirements tools
	Slide 31
	Software Engineering (4)
	Software quality model (ISO/IEC 25010:2011)
	Quality model for AI systems (ISO/IEC 25059:2024)
	Software quality model (ISO/IEC 25010:2023)
	Evaluation process (ISO/IEC 25040:2011)

