
Software Engineering
Part 6 – The Unified Modeling Language

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Engineering
Part 6 – The Unified Modeling Language

6.1 Introduction

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

3

Software Development Methods

4

Software Development Methods
• processes that distinguish development stages in the software life cycle.

Should:
• be modular, reduce complexity, reuseable, at the right level of abstraction

• Using a representation formalism that facilitates communication,
organization and verification

• Production of a set of artifacts that facilitate design feedback and
application evolution

• documents, models, prototypes

5

Existing software Development
Methods
• Hierarchical functional methods

• Data-Flow/SADT/SA-SD, Structure-Chart, ...

• Data oriented methods
• Entité-Relation, MERISE, ...

• Behaviour oriented methods
• SA-RT, Petri Net, ...

• Object oriented methods
• OMT, OOA, Classe-Relation, OOD, ...

6

Object-oriented SD methods
• Statement:

• at the beginning of the 90’s, there are about 50 object oriented methods,
• linked only by a consensus around common ideas (object, class, subsystems, ...)
• BUT each with its own notation,
• WITHOUT being able to fulfill all the needs and to correctly model the various fields of application.

• Definition of a single common language
• usable by any object method,
• in all phases of the life cycle,
• compatible with current production techniques.

 UML

• Definition a common unified development process
 Unified Process (obsolete, use Scrum or other more recent processes)

UML (Unified Modeling Language)
• Based on:

• OMT notations (J. Rumbaugh) for the analysis and design of data-based
information systems

• G. Booch’s method notations for the design and implementation phases
• OOSE notations (I. Jacobson) for requirement analysis through "use cases".

• Proposes:
• Standardized development artifacts (models, notation, diagrams) WITHOUT

standardizing the development process,

• Important role played by RATIONAL and OMG (http://www.omg.org/)

Booch method OMT
(Rumbaugh)

Unified Method 0.8OOPSLA 1995

OOSE
(Jacobson)

Other methods

UML 0.9Web - June 1996

UML 1.1
1st submission à OMG, Jan 1997

Approval OMG, Nov 1997

UML 1.0UML partners

UML : Evolution

Revision Task Force, Jul 2005 UML 2.0

UML 2.5.1Latest version

Meyer

Before and after
 conditions

Harel

Statecharts
Gamma, et al

Frameworks and patterns

HP Fusion

Operation descriptions and
message numbering

Embley

Singleton classes and
high-level view

Wirfs-Brock

Responsibilities

Odell

Classification

Shlaer - Mellor

Object lifecycles

Rumbaugh

OMT

Booch

Booch method

Jacobson

OOSE

Contributions to UML 1.X UML Meta-Model

Based on Martin Fowler UML Distilled and Viviane Jonckers OOSD-UML course

UML Vocabulary

Basic components
Relations

DiagramsStruct.

Comp.

Group.

Annot.

Use cases
Classes
Active classes
Interface
Component
Collaboration
Node

Interaction
State machine

Package
Model
Sub-system
Framework

note
Dependences
Associations
Generalisation

+ extention mechanisms

UML Diagrams

Possibility of representing the same diagram at different levels of detailUML Specification, v2.5.1, p727 https://www.omg.org/spec/UML/2.5.1/PDF

Views on the Software

Performance
Scalability

System integrators
System topology

Installation
Communication

System engineer

Conceptuel Physique

Use
cases

Programmers
Software

management

Designers

Problem domain

Implementation view

Process view Deployment view

Design view

Diagrams within Views on the Software

Designers

Problem domain

Implementation view

Programmers
Software

management

Process view

Performance
Scalability

System integrators

Deployment view

System topology
Installation

Communication

System engineer

Conceptual Physical

Use case view

Classes, Objects, Composite Structure
Communication, Sequences

Interaction, Activity

Components, Composite Structure
Interaction, Statechart

Component, Deployment
Interaction

Use Cases
Interaction

Design view

Rules of thumb

• Nearly everything in UML is optional

• UML provides a language to capture information that varies
greatly depending on the domain of the problem.

• Parts of UML either don't apply to your particular problem or may
not lend anything to the particular view you are trying to convey.

• You don't need to use every part of UML in every model you
create.

• You don't need to use every allowable symbol for a diagram type
in every diagram you create.

• Show only what helps clarify the message you are trying to

Pointers
• The UML Specification https://www.omg.org/spec/UML/About-UML/
• https://www.uml-diagrams.org/

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.1 – Use case diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/ 18

Use case diagrams
Describes a set of actions (use cases) that some system or systems
(subject) should or can perform in collaboration with one or more
external users of the system (actors) to provide some observable and
valuable results to the actors or other stakeholders of the system(s).

terminology: use case, actor, subject, extend, include, association.

see also: https://www.uml-diagrams.org/use-case-reference.html

19

Business Use Case Diagrams

see also: https://www.uml-diagrams.org/use-case-reference.html
20

System Use Case Diagrams

see also: https://www.uml-diagrams.org/use-case-reference.html

21

Actors and use cases
Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the
subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

Generalization between actors
see also: https://www.uml-diagrams.org/use-case-reference.html

22

Actors and use cases
Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the
subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

see also: https://www.uml-diagrams.org/use-case-reference.html

23

Includes and Extends
Extends

Extend is a directed relationship that specifies how and when the behavior defined in usually supplementary
(optional) extending use case can be inserted into the behavior defined in the extended use case.

Includes

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

see also: https://www.uml-diagrams.org/use-case-reference.html
24

Includes and Extends
Includes

Use case include is a directed relationship between two use cases which is used to show that behavior of
the included use case (the addition) is inserted into the behavior of the including (the base) use case.

The include relationship could be used:

• to simplify large use case by splitting it into several use cases,

• to extract common parts of the behaviors of two or more use cases.

see also: https://www.uml-diagrams.org/use-case-reference.html

25

Use Case Relationships Compared

Generalization Extend Include

Base use case could be
abstract use case (incomplete) or
concrete (complete).

Base use case is complete (concrete) by
itself, defined independently.

Base use case is incomplete (
abstract use case).

Specialized use case is required, not
optional, if base use case is abstract.

Extending use case is optional,
supplementary.

Included use case required, not
optional.

No explicit location to use
specialization.

Has at least one explicit extension
location.

No explicit inclusion location but is
included at some location.

No explicit condition to use
specialization.

Could have optional extension
condition.

No explicit inclusion condition.

see also: https://www.uml-diagrams.org/use-case-reference.html
26

Describe Use Case Behaviors
Use case behaviors may be described in a natural language text
(opaque behavior), which is current common practice, or by using
UML behavior diagrams for specific behaviors such as

• activity,

• state machine,

• interaction.

link between a use case and an activity

description using a state machine diagram

Activity diagram: description of the Purchase Ticket activitysee also: https://www.uml-diagrams.org/use-case-reference.html

27

Use Case diagrams examples
See https://www.uml-diagrams.org/use-case-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.2 – Activity diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

29

Activity diagrams
Activity diagram is UML behavior diagram which shows flow of
control or object flow with emphasis on the sequence and conditions of
the flow. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data
become available, or because some events external to the flow occur.

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html
30

Activity diagrams

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

With swimlanes

Rendered with the frame notation for diagrams: keyword act

With parameters

31

Types of actions
Action is a named element which represents a single atomic step within activity, i.e. that is not further
decomposed within the activity. Activity represents a behavior that is composed of individual elements that are
actions.
• Object actions include different actions on objects, e.g. create and destroy object, test object identity, specify value, etc.
• Variable actions include variable read, write, add, remove and clear actions.
• Invocation actions include several call actions, signal send and broadcast actions and send object action.
• Send signal action
• Accept signal action
• Wait time action
• ...

Actions

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-actions.html
32

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
• initial node
• flow final node
• activity final node
• decision node
• merge node
• fork node
• join node

Controls

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

33

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
• initial node
• flow final node
• activity final node
• decision node
• merge node
• fork node
• join node

Controls

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-objects.html
34

Types of controls
Control node is an activity node:
• initial node
• flow final node
• activity final node
• decision node
• merge node
• fork node
• join node

Controls

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-controls.html

Decision node with decision input flow.Decision node with decision input behavior.Decision node with outgoing edges with guards

35

Objects flow in an activity

Objects

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-controls.html

A data store is a central buffer node for non-transient information.input and output pins

36

Activity diagrams examples
See https://www.uml-diagrams.org/activity-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.3 – State machine diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/ 38

State machine diagrams
Used for modeling discrete behavior through finite state transitions. In
addition to expressing the behavior of a part of the system, state
machines can also be used to express the usage protocol of part of a
system. These two kinds of state machines are referred to as
behavioral state machines and protocol state machines.

terminology: behavioral state, behavioral transition, protocol state, protocol transition, different
pseudostates.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

39

State machine diagrams

40

States

Simple state

List of internal activities

Composite state

Composite state with hidden decomposition

41

Pseudostates

initial/terminate(destroy)/final entry/exit choice fork/join

42

Protocol transition

protocol-transition ::= [pre-condition] trigger '/' [post-condition]
pre-condition ::= '[' constraint ']'
post-condition ::= '[' constraint ']'

A protocol transition is specialization of (behavioral) transition used for the protocol state machines which
specifies a legal transition for an operation. Protocol transition has the following features: a pre-condition
(guard), trigger, and a post-condition.

43

State Machine diagram examples
See https://www.uml-diagrams.org/state-machine-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.3 – Communication diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

45

Communication diagrams
Communication diagram (called collaboration diagram in UML 1.x) is a
kind of UML interaction diagram which shows interactions between
objects and/or parts (represented as lifelines) using sequenced
messages in a free-form arrangement.

terminology: frame, lifeline, message

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html
46

Communication diagrams

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

47

Communication diagrams

in sequence in parallel guards

n times, in sequence n times in parallel

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html
48

Communication diagram examples
See https://www.uml-diagrams.org/communication-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.1 – Class diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/ 50

Class diagrams
Class diagram is UML structure diagram which shows structure of the
designed system at the level of classes and interfaces, shows their
features, constraints and relationships - associations, generalizations,
dependencies, etc.

types of class diagrams are:
• domain model diagram,
• diagram of implementation classes.

see also: https://www.uml-diagrams.org/class-reference.html

51

Do
m

ai
n

m
od

el

di
ag

ra
m

s

see also: https://www.uml-diagrams.org/class-reference.html
52

D
ia

gr
am

 o
f

Im
pl

em
en

ta
tio

n
Cl

as
se

s

see also: https://www.uml-diagrams.org/class-reference.html

53

Class
Class

A class is a classifier which describes a set of objects that share the same:

• features,

• constraints,

• semantics (meaning).

Class SearchService - implementation level details.
The createEngine is static operation

Class SearchService - analysis level details
Class SearchService - attributes and operations grouped by visibility

see also: https://www.uml-diagrams.org/class-reference.html
54

Abstract, Nested, Template, Interface

Abstract class (italics) Class LinkedList is nesting
the Element interface. The
Element is in scope of the
LinkedList namespace.

Template class Array and
bound class Customers.
The Customers class is an
Array of 24 objects of
Customer class.

Abstract, Nested, Template, Interface

Interface realization

Interface usage

Various kinds of constraints or protocol
specifications (ordering restrictions)

An interface

see also: https://www.uml-diagrams.org/class-reference.html

55

Objects

Anonymous
instance of the
Customer class

Instance
newPatient of the
unnamed or
unknown class

Instance front-
facing-cam of the
Camera class
from
android.hardware
package.

Instance
orderPaid of the
Date class
has value July 31,
2011 3:00 pm.

Instance
newPatient of the
Patient class
has slots with
values specified.

see also: https://www.uml-diagrams.org/class-reference.html
56

Data Type, primitive type, enumeration
type

DateTime data type

Structured data type

Attributes of the Patient class are
of data types Name, Gender,
DateTime, Address and Visit.

Primitive data type.
Standard UML primitive
types include:
- Boolean,
- Integer,
- UnlimitedNatural,
- String.

 values are enumerated
in the model as user-
defined enumeration
literals

see also: https://www.uml-diagrams.org/class-reference.html

57

Operations

Operations with different visibilities
executeQuery is public, isPoolable is
protected, getQueryTimeout has
package visibility,
clearWarnings is private.

static operations are underlined
operations have a signature, with
parameters, and a return type.
File has two static operations - create
and slashify. Create has two parameters
and returns File. Slashify is private
operation. Operation listFiles returns
array of files. Operations getName and
listFiles either have no parameters or
parameters were suppressed.

Operation setDaemon has one input
parameter, while single parameter of
changeName is both input and output
parameter. Static enumerate returns
integer result while also having output
parameter - array of threads. Operation
isDaemon is shown with return type
parameter. It is presentation option
equivalent to returning operation result
as: +isDaemon(): Boolean.

see also: https://www.uml-diagrams.org/class-reference.html
58

Write constraints

Bank account attribute constraints -
non empty owner and positive balance.

Account owner is either Person or Corporation,
{xor} is predefined UML constraint.

Bank account constraints - non empty owner and
positive balance

see also: https://www.uml-diagrams.org/class-reference.html

59

Members and multiplicity

Multiplicity of players for SoccerTeam
class

Utility: class that has only class
scoped static attributes and operations.

see also: https://www.uml-diagrams.org/class-reference.html
60

Associations

Association Order of the ends and reading: Car - was designed in - Year Ternary association Design relating three classifiers.

Aggregation

Composite Aggregation (= composition)
If folder is deleted, all files are deleted as well

Aggregation/composition Ownership

Association end qb is an attribute of SearchService
class and is owned by the class.

A2 has unspecified navigability while B2 is navigable from A2.

A3 is not navigable from B3 while B3 has unspecified navigability.

Navigability

Association qualifier

Given a company and a social security number (SSN) at
most one employee could be found.

see also: https://www.uml-diagrams.org/class-reference.html

61

Generalization

Checking, Savings, and Credit Accounts are generalized by Account.

=

see also: https://www.uml-diagrams.org/class-reference.html
62

Interfaces

Interface SiteSearch is realized (implemented) by SearchService.Interface SiteSearch is used (required) by Search Controller.

see also: https://www.uml-diagrams.org/class-reference.html

63

Dependency

Data Access depends on Connection Pool

Search Controller uses Search Engine.

Data Source creates Connection

see also: https://www.uml-diagrams.org/class-reference.html
64

Class diagram examples
See https://www.uml-diagrams.org/class-diagrams-examples.html

Pointers
• The UML Specification https://www.omg.org/spec/UML/About-UML/
• https://www.uml-diagrams.org/

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.2 – Package diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

67

Package diagrams
Package diagram is UML structure diagram which shows structure of the designed
system at the level of packages.

Elements:

• package,

• packageable element,

• dependency,

• element import,

• package import,

• package merge.

see also: https://www.uml-diagrams.org/class-reference.html
68

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package diagrams

69

Package
Package

A package is a namespace used to group together elements that are semantically related and might change
together. It is a general purpose mechanism to organize elements into groups to provide better structure for
system model.

Package org.hibernate Package org.hibernate contains SessionFactory and Session. Package org.hibernate contains interfaces
SessionFactory and Session.

All elements of Library Domain package are
public except for Account.

see also: https://www.uml-diagrams.org/package-diagrams-reference.html
70

Import
Element Import

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package Import

Public import of PageInfo element into Search namespace from Domain package.
Imported element are added to the namespace and made visible outside the namespace
.

Private import of SortInfo element into Search namespace from Domain package.
Imported element are added to the namespace but not visible outside the namespace
.

Public import:
All elements are added to the namespace and made visible outside the namespace

Private import:
All elements are added to the namespace but not visible outside the namespace

71

Package merge

Kernel package merges Constructs package which imports Primitive Types.
The contents of Constructs is combined with the one of Kernel

72
see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Model diagram

73

Model

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Different notations for Models

74

Package diagram examples
See https://www.uml-diagrams.org/package-diagrams-examples.html

Pointers
• The UML Specification https://www.omg.org/spec/UML/About-UML/
• https://www.uml-diagrams.org/

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.3 – Composite Structure diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

77

Composite Structure diagrams
Composite Structure Diagram could be used to show: internal structure of a
classifier - internal structure diagram, classifier interactions with environment
through ports, a behavior of a collaboration - collaboration use diagram.

Elements:

• class,

• part,

• port,

• connector,

• usage

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html
78

Composite Structure diagrams

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

79

Structured classifier
Structured classifier

Structured classifier is classifier having internal structure and whose behavior can be fully or partially
described by the collaboration of owned or referenced instances.

Different notations for structured classifiers

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Simple ports joined directly by connector, mandatory UML notation.
Customers component part provides Account interface to Orders part.

80

Encapsulated Classifier

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Encapsulated classifier is structured classifier extended with the ability to own ports.

Library Services is classifier encapsulated through Search Port Simple ports joined directly by connector, mandatory UML notation.
Customers component part provides Account interface to Orders part.

81

Part
represents a set of instances that are owned by a containing instance of a classifyer.

all parts are destroyed when the containing classifier instance is destroyed (composition)

Search Controller has 1 to 3 engines - Search Engine part Two Data Sources is sources property - but not part - of Search Controller

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html
82

Port

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

83

Connectors

Assembly connector between ports of Authentication and Customers components.

Assembly connector between simple ports of Authentication and Customers components.

Assembly connector that assembles three parts.

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

84

Composite structure diagram
examples
See https://www.uml-diagrams.org/composite-structure-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.4 – Component diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/ 86

Component diagrams
Component diagram shows components, provided and required interfaces, ports, and relationships
between them. This type of diagrams is used in Component-Based Development (CBD) to describe
systems with Service-Oriented Architecture (SOA).

Elements:

• component,

• provided interface,

• required interface,

• port,

• connectors.

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

87

Component diagrams

see also: https://www.uml-diagrams.org/component-diagrams-reference.html
88

Components
Component

A component is a class representing a modular part of a system with encapsulated content and whose
manifestation is replaceable within its environment.

A component has its behavior defined in terms of provided interfaces and required interfaces (potentially
exposed via ports)

Different notations for components

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Old notation. For backward compatibility only

89

Interfaces

Weather Services component provides
(implements) Weather Forecast interface.

User Services component requires
IOrderServices interface.

90

Realization

Different notations for:
Component UserService realized by UserServlet and UserDAO..

91

Delegation

Delegation handled by a single port

Delegation connector from the delegating port to the UserServlet part.

Delegation connector from the simple port of Authentication
component to the delegating port.

92

Assembly

Assembly connector between ports of Authentication and Customers components.

Assembly connector between simple ports of Authentication and Customers components.

Assembly connector that assembles three parts.

93

Component diagram examples
See https://www.uml-diagrams.org/component-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.5 – Deployment diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

95

Deployment diagrams
Deployment Deployment diagram is a structure diagram which shows
architecture of the system as deployment (distribution) of software artifacts
to deployment targets.

Some common types of deployment diagrams are:
• Implementation (manifestation) of components by artifacts,
• Specification level deployment diagram,
• Instance level deployment diagram,
• Network architecture of the system.

see also: https://www.uml-diagrams.org/deployment-diagrams-reference.html
96

Manifestation of Components by
Artifacts

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

97

Specification Level Deployment
Diagram

see also: https://www.uml-diagrams.org/component-diagrams-reference.html
98

Instance Level Deployment Diagram

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

99

Network Architecture Diagrams

see also: https://www.uml-diagrams.org/component-diagrams-reference.html
100

Deployment diagram examples
See https://www.uml-diagrams.org/deployment-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.6 – Sequence diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/ 102

Sequence diagrams
Sequence diagram is the most common kind of interaction diagram, which focuses on the message
 interchange between a number of lifelines.

Types of nodes

• lifeline,

• execution specification,

• message,

• combined fragment,

• interaction use,

• state invariant,

• continuation,

• destruction occurrence.

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

103

Sequence diagrams

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html
104

Lifeline

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

105

Execution

106

Calls

Synchronous
Web Client searches Online Bookshop and waits for results. Asynchronous

Service starts Task and proceeds in parallel without waiting.

107

Messages

Create Delete Reply

Lost Found

108

Combined fragment with interaction
operator
Interaction operator could be one of:
• alt - alternatives
• opt - option
• loop - iteration
• break - break
• par - parallel
• strict - strict sequencing
• seq - weak sequencing
• critical - critical region
• ignore - ignore
• consider - consider
• assert - assertion
• neg - negative

109

Sequence diagram examples
See https://www.uml-diagrams.org/sequence-diagrams-examples.html

