Software Engineering

Part 6 — The Unified Modeling Language

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Software Development MethcA<

—

SCRUM
FRAMEWORK

= — , T%ﬂ ‘ %_ O ()
bm\ == m\n .23 B ’m.o

Software Engineering

Part 6 — The Unified Modeling Language
6.1 Introduction

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Software Development Methods

* processes that distinguish development stages in the software life cycle.
Should:
* be modular, reduce complexity, reuseable, at the right level of abstraction

* Using a representation formalism that facilitates communication,
organization and verification

* Production of a set of artifacts that facilitate design feedback and
application evolution
* documents, models, prototypes

Existing software Development
Methods

* Hierarchical functional methods

* Data-Flow/SADT/SA-SD, Structure-Chart, ...
* Data oriented methods

* Entité-Relation, MERISE, ...

* Behaviour oriented methods
* SA-RT, Petri Net, ...
* Object oriented methods
* OMT, OOA, Classe-Relation, 00D, ...

UML (Unified Modeling Language)

* Based on:

* OMT notations (J. Rumbaugh) for the analysis and design of data-based
information systems

* G. Booch’s method notations for the design and implementation phases
* OOSE notations (l. Jacobson) for requirement analysis through "use cases".

* Proposes:

* Standardized development artifacts (models, notation, diagrams) WITHOUT
standardizing the development process,

* Important role played by RATIONAL and OMG (http://www.omg.org/)

v & Standards
()‘ l\’ Deua\o;meﬂt
—

Organization

Object-oriented SD methods

¢ Statement:

* at the beginning of the 90’s, there are about 50 object oriented methods,

* linked only by a consensus around common ideas (object, class, subsystems, ...)

* BUT each with its own notation,

* WITHOUT being able to fulfill all the needs and to correctly model the various fields of application.
* Definition of a single common language

* usable by any object method,

* inall phases of the life cycle,

* compatible with current production techniques.

- UMmL

* Definition a common unified development process
- Unified Process (obsolete, use Scrum or other more recent processes)

UML : Evolution ——

Unified Wadeling Languge

B
Latest version UML25.1
a S e
.. ; TABLE OF COMTENTS
Revision Task Force, Jul 2005 UML 2.0 !
P]
Approval OMG, Nov 1997 U ML]. 1
/ .
1st submission a OMG, Jan 1997
UNIFIED o ‘SPECIFICATION DOCUMENTS
UML partners UML 1.0 NODELNG L s
f LANGUAGE m
Web - June 1996 > UMLO0.9
Joow

OOPSLA 1995 Unified Method 0.8

Other methods Booch method OMT OOSE
(Rumbaugh) (Jacobson)

Contributions to UML 1.X UML Meta-Model
Meyer Harel Gamma, et al

Statecharts A
Before and after Frameworks and patterns ‘ |
conditions
HP Fusion wutciyeiment | | pedznen Eam
Booch N
Operation descriptions and £|5 Ly £|5
Booch method \ N\ Y ¥ message numbering
N

/ +ownerFormalParam +formalParameter
‘ > “ 0.1 >
UNIFIED Embl ‘ StructuralFeature ‘ BehaviouralFeature i
Rumbaugh — bley >

—— " MODELING +retumnBesult

%
+ownerRetumParam

oMT LANGUAGE - Singleton classes and 0.1

. \ high-level view +owningRarameter
Propel
Jacobson / / A Wirfs-Brock Holafivakie
0..1
OOSE / \ Responsibilities +ougne:rUpper +uppuer¥a_:. ¥
Shlaer - Mellor Odell MultiplicityEtement | " ' _|ValueSpecification

+ownerLower +owerVall

ject li Classification
Object lfecycles Based on Martin Fowler UML Distilled and Viviane Jonckers OOSD-UML course

UML Vocabulary UML Diagrams

i}

Behavior
Diagram
A

Basic components

. T T T I 1
Relations c ob Activi
ity se Case i
Annot, Dependences classDigram | | | Cgmmenant] | ‘ st i
Associations .
Struct. Group. Generalisation Diagrams e :
Package P iy Dapiepsant Eatesge Interaction
Use cases Disgram iagram iagram Diagram
Classes c Model
Active classes omp. Sub-system ‘ L —L
Interface Interaction ~Framework Frefie Diegren ‘ Ssquence | Sverview. ‘
Component State machine Diagram
Collaboration
Node Colr;!\‘unica[ion | D-r_im.ng ‘
foaram fagram

+ extention mechanisms Figure A.5 The taxonomy of structure and behavior diagrams

UML Specification, v2.5.1, p727 Possibility°sf representing the same diagram at different levels of detail

Views on the Software

Design view

Designers

Problem domain l

Process view
System integrators
Performance
Scalability

Rules of thumb

* Nearly everything in UML is optional

* UML provides a language to capture information that varies
greatly depending on the domain of the problem.

* Parts of UML either don't apply to your particular problem or may
not lend anything to the particular view you are trying to convey.

* You don't need to use every part of UML in every model you
create.

* You don't need to use every allowable symbol for a diagram type
in every diagram you create.

* Show only what helps clarify the message you are trying to

Diagrams within Views on the Software

Classes, Objects, Composite Structure
ps ‘s

Design view

Designers
Problem domain

Use case view

Interaction, Activity IUie CatS_ES
nteraction

Process view

System integrators
Performance
Scalability

Conceptual Physical

Pointers

* The UML Specification https://www.omg.org/spec/UML/About-UML/
* https://www.uml-diagrams.org/

Use case diagrams

Describes a set of actions (use cases) that some system or systems
(subject) should or can perform in collaboration with one or more
external users of the system (actors) to provide some observable and

S Oftwa re E n g I n e e rl n g valuable results to the actors or other stakeholders of the system(s).

Part 6 — The Unified Modeling Language
6.2 — diagrams we’ll use for the analysis phase

6.2.1 — Use case diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction terminology: use case, actor, subject, extend, include, association.
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng, see also: - f html

Business Use Case Diaarams System Use Case Diagrams

subject
" business boundary /r-sumﬁct. system boundary

i
«Business»
association Airport business use case «Subsystem:
business actor \ Checkout
N ,
. + Group
Check-l multiplicity cextends 7 extend relationship
i » =
e T
Tour Guide T TR ac
generalization «includen :4-*" actor \
between actors *A
R . \'1-\ i L @ +
~—_ —
— Individual ™~ actor
actol
Check-l /3
e Customer ec\nclude»\\ Clerk 7’:

— relationship

N

1.7 o~)
«extends ™ ~
" include — — I‘ i i
- A Baggage relationship) T /',_,.?1
Check-l -

business actor 1.7
Passenger ‘ﬁ‘ Payment Service

7 multiplicity

use case ™
Security W ~—). Manage |-
Screeni - Users
business use case

1o @ uml-diagrams.org A

see also: https://www.uml-d use-case-reference.html

1

multiplicity

© uml-diagrams.org

see also: https://www.uml-di use-case-reference.html

see also:

Registration —“Exf n—d» Get Help On " - 4’
9 Registration Registration h
_d _ _(GetHelpOn
extonds \ Registration

see also: https://www.uml-di

Student

Actors and use cases

Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the
subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

Web Client
@ «actor
Customer /7 V\
;t - +name: Name % %
+ address: Address
Web Client Bank

Administrator Customer
Editor

Generalization between actors 2

p:

rg/use-c htm!

Includes and Extends

Extends

Extend is a directed relationship that specifies how and when the behavior defined in usually supplementary
(optional) extending use case can be inserted into the behavior defined in the extended use case.

Condition: {user clicked help link}

extension Registration Help Registration <

-userProfile

Registration

extension points
Registration Help
User Agreement

extension points
Registration Help
User Agreement

ef

extension points
Registration Help

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

Includes

use-case-reference.html

see also:

Actors and use cases

Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the
subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other

stakeholders] of each subject.
«authentication»
Q User Sign-in
-userCredentials

Transfer Funds ‘authType

Registration (O

Registration

extension points
Registration Help
User Agreement

extension points
Registration Help
User Agreement

I-d htmi

see also: https://www.uml-d

Use case include is a directed relationship between two use cases which is used to show that behavior of
the included use case (the addition) is inserted into the behavior of the including (the base) use case.

=) & @D

Includes and Extends

Includes

The include relationship could be used:
* to simplify large use case by splitting it into several use cases,

* to extract common parts of the behaviors of two or more use cases.

«ncludes
-

-
«inelude» /" Calculate
Total and Tax
N

N
«include» ™«

Deposit

«include»
Funds -

i

Withdraw -
Cash «include»

0
e

use-case-reference.html

Use Case Relationships Compared

Generalization

Extend

Include

Base use case could be
abstract use case (incomplete) or
concrete (complete).

Bank ATM | “extend>
Transaction

itself, defined independently.

Base use case is complete (concrete) by

Bank ATM U9 6t

Transaction "\ Authentication

Base use case is incomplete (

abstract use case).

Specialized use case is required, not

optional, if base use case is abstract.

Extending use case is optional,
supplementary.

Included use case required, not
optional.

No explicit location to use
specialization.

Has at least one explicit extension
location.

No explicit inclusion location but is
included at some location.

No explicit condition to use
specialization.

Could have optional extension

condition.

No explicit inclusion condition.

rg/use-c htm!

see also: htp:

Use Case diagrams examples

See https://www.uml-diagrams.org/use-case-diagrams-examples.html

see also:

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

Describe Use Case Behavior

Use case behaviors may be described in a natural language text
(opaque behavior), which is current common practice, or by using
UML behavior diagrams for specific behaviors such as

* activity,

* state machine

interaction.

Purchase Ticket (O

uc Search ltems

Search Items.

Enter
Search terms.
Evaluate
Results

owned behaviors C

description using a state machine diagram

htmi

link between a use case and an activity

Commuter Ticket vending machine Bank

Start Session

Request
Trip Info

Process.
Trip Info
Request
Payment
Process
Payment

pay win
cash)

Provide.
Trip Info

Payment Info

@

)

Authorize
Card Payment
Dispense Tickel

{paid with cash
‘& with change]

Dispense
Change

Char

Show
Thank You

© uml-diagrams.org

Activity diagram: description of the Purchase Ticket activity

Software Engineering

Part 6 — The Unified Modeling Language

6.2 — diagrams we’ll use for the analysis phase

6.2.2 — Activity diagrams

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller

Course unit URL: https:

‘ci.mines-stetienne.fr/cps2/course/softeng,

see also:

Activity diagrams

Activity diagram is UML behavior diagram which shows flow of
control or object flow with emphasis on the sequence and conditions of
the flow. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data
become available, or because some events external to the flow occur.

terminology: activity, partition, action, object, control, activity edge.

Luml-di d f htm!

see also:

paid

|
Process
Order

«localPostcondition»
- order is complete
and verified

Actions

Types of actions
Action is a named element which represents a single atomic step within activity, i.e. that is not further
decomposed within the activity. Activity represents a behavior that is composed of individual elements that are

actions.
Object actions include different actions on objects, e.g. create and destroy object, test object identity, specify value, etc.

Variable actions include variable read, write, add, remove and clear actions. U +
Invocation actions include several call actions, signal send and broadcast actions and send object action. Authen on
Send signal action /

—

Accept signal action
Wait time action

Ship Notify
Order Customer

—

Payment Payment

Requested Confirmed
Every N\

Get News
terminology: activity, partition, action, object, control, activity edge. hour /N

uml-d diag tions.html

Activity diagrams

act Authenticate User (String Legin_Id, String Password)

Online Shopping

Login_Id

Rendered with the frame notation for diagrams: keyword act

Authenticate User
Login Id: String
Password: String

Ea

With parameters

terminology: activity, partition, action, object, control, activity edge.

-
-

Order Dept | Customer

With swimlanes

see also: hitp: I-di s diag e.html

Controls

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
initial node

flow final node
activity final node
decision node
merge node

fork node

join node

initial node

fark node jain node

merge node

decision node []

activity
final node

terminology: activity, partition, action, object, control, activity edge.

see also: hitp: g html

see also:

Controls

Types of controls

Control node is an activity node used to coordinate the flows between other nodes. It includes:

* initial node

* flow final node
activity final node
decision node
merge node

fork node

join node

terminology: activity, partition, action, object, control, activity edge.

-di di biects.html

p:

see also:

Objects

Objects flow in an activity

Review
Order

terminology: activity, partition, action, object, control, activity edge.

decision node

initial node

fork node

join node

merge node

activity

final node

Create nvmce

Invoice

LR agao
Shopping Cart

input and output pins

I-di d trols.html

see also:

Patient Patient «datastore»
Admission Patients

Adata store is a central buffer node for non-transient information.

Controls

Types of controls

Control node is an activity node:

initial node

flow final node
activity final node
decision node
merge node

fork node

join node

terminology: activity

[order accepted]

[order rejected]

[priority=1]

[priority=2]

Decision node with outgoing edges with guards

N [true]
\

Reorder
Item

Decision node with decision input behavior.

partition, action, object, control, activity edge.

Activity diagrams examples

«decisionlnputFlow»

[guard 1]

[guard 2]

Decision node with decision input flow.

See https://www.uml-diagrams.org/activity-diagrams-examples.html

Software En

gineering

Part 6 — The Unified Modeling Language

6.2 — diagrams we’ll use for the analysis phase

6.2.3 — State machine diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Sof
Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

State machine diagra

ftware Engineering

see also:

ms

_ protocol keyword
" indicates protocolstate machine

protocol state

[isCancelRequested()]
cancel/

protocol state
with an invariar

state machine User Account {protocol} initial pseudostate

isUniqueld()]

[isVerified()]

[isUniqueld()]

—

activate/ — gger
4 Gnd posteondition

[isSuspendRequested()] suspend/

lisAccountDormant()] suspend/
Active Suspended
[isResumeRequested(}] resume/

uml-diagrams.org 39

State machine diagrams

Used for modeling discrete behavior through finite state transitions. In
addition to expressing the behavior of a part of the system, state
machines can also be used to express the usage protocol of part of a
system. These two kinds of state machines are referred to as
behavioral state machines and protocol state machines.

terminology: behavioral state, behavioral transition, protocol state, protocol transition, different
pseudostates.

e.html

States

for
User Input Serving Customer

i \
Simple state o
Customer
Authentication Transaction
Waiting for
User Input

entry/ welcome
exitl thanks

Composite state

List of internal activities Serving
Customer
oo

Composite state with hidden decomposition

Pseudostates

user entry

Waiting for
User Input

[bal < min] bal >= min
—=X
%@ [=11] [>13]
<0
S oo
[<= tz]
initial/terminate(destroy)/final entry/exit choice

Protocol transition

A protocol transition is specialization of (behavioral) transition used for the protocol state machines which
specifies a legal transition for an operation. Protocol transition has the following features: a pre-condition

(guard), trigger, and a post-condition.

. n [isVerified()]
activate/

(o} E protocol-tr ::= [pre-condition | trigger'' [post-condition]
pre-condition ::= '[' constraint ']’
post-condition ::= '[' constraint ']

fork/join

State Machine diagram examples

See https://www.uml-diagrams.org/state-machine-diagrams-examples.html|

Software Engineering

Part 6 — The Unified Modeling Language
6.2 — diagrams we’ll use for the analysis phase

6.2.3 — Communication diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
) Guillaume Muller
s Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Communication diagrams Communication diagrams

name of owning element

frame heading or enciosing namespace diagram frame

diagram kind -

—

Communication diagram (called collaboration diagram in UML 1.x) is a interaction Ol]
kind of UML interaction diagram which shows interactions between

:Inventory

guard
objects and/or parts (represented as lifelines) using sequenced = 7‘ J
messages in a free-form arrangement. T 1,1;5&3@(,/, gt
expression iteration lifeline class
} 1.2 [interested): ”HTE ;‘ame

view_book()
—

\ ¥

1.3 [decided to buy]
2; checkout()

E
\

.
add_to_cart) lifeline

selector
sc[customer]:
Shopping Cart

© uml-diagrams.org

\

2.2 [not empty(cart)]:

~a
2.1: get_books()
* make_order()

terminology: frame, lifeline, message

sequence
expression

~
lifeline
see also: https://www.uml-d; g diagrams- htm!

IS

see also: https://www.uml-di di i html

Communication diagrams Communication diagram examples

See https://www.uml-diagrams.org/communication-diagrams-examples.html

2.3b [x>y]: draw()

—
N

guards

~
2.3b:drawi()

in sequence in parallel

1.2 *[k:1..n]: search(k) 1.2 *||[k:1..n]: search(k)
ntimes, in sequence ntimes in parallel

48
see also: hitp: I-di diag html

Part 6 — The Unified Modeling Language

Software Engineering

6.3 — diagrams we’ll use for the design phase

6.3.1 — Class diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https:

ci.mines-stetienne.fr/cps2/course/softeng,

Domain model

diagrams

see also: https://www.uml-di

Book

ISBN: String[0..1] {id}

title: Stiing ~ f+ 0

reading order

Author

summary \
publisher \ A
publication date " \
number of pages \ \
language \

generalizal

«entity» Book ltem

multiplicity

name: Sting _
biography: String

attributes

«entity» Account

v
barcode: String [0..1] {id} [0.12 < borrowed number {id)
tag: RFID (0..1] {id) history: History[0..]
isReferenceOnly 0.3 o reserved opened: Date

association

1
Catalog }-

lass- html

state: AccountState

accounts.

interface realization

usage dependency

see also:

enumeration
data type
/

¥+

«enumeration»
AccountState

Active
Frozen
Closed

Patron

name
address

Librarian

name
address.
position

Class diagrams

Class diagram is UML structure diagram which shows structure of the

designed system at the level of classes and interfaces, shows their
features, constraints and relationships - associations, generalizations,

dependencies, etc.

types of class diagrams are:

* domain model diagram,
* diagram of implementation classes.

html

Diagram of
Implementation Classes

see also: https://www.uml-d

usage

constructor

class-

e.html

~ class

ainterfaces android.apy
android.view::SurfaceHolder % onGroatofetata: Bundo)
+ addC Surfacet I # onStart()
+ removeCallbackicallback: SurfaceHolder.Callback) < # onStap()
+ setType(type: Integer) # onDestroy()
+ setFormat(format: Integer) + onCreateOptionsMenu(menu: Menu): Baolean
+ getSurface(): Surface + anOptiansltemSelected(item: Menultem): Boolean
T
i f
_ sieaser | eusen ausen +——— generalization
] |
y |
winterfacen CameraDemo
android.view::SurfaceHolder.Callback o
~ buttenClick: Button
+ surfaceChanged (holder: SurfaceHolder, - shutterCallback ShutterCallback <——
format: Integer, width: Integer, height: Integer) ~ rawCallback: PictureCallback B
+ surfaceCreated(holder: SurfaceHolder) - jpegCallback: PictureCallback
+ surfaceDestroyed (holder: SurfaceHolder) context
JonCreatelsavedinstanceState: Bundie)
d ! # JonStart()
4 | # JonStop()
! H # JonDestroy()
i
android.view::SurfaceView / ! + lonCreateOptionsMenu(menu: Menu): Boolean
+ idrawi(canvas: Canvas) H
+ getHolder(): SurfaceHolder H
i
\ i
|
I / |
— / |
i | ~ camera
Preview | android.hardware::Camera
- ~preview '
mHolder: SurfaceHolder . + openfcamerald: Integer}: Camera
+ getParameters(): Parameters
3+ wereates Preview(context: Context) ‘ :emramemrs:?aarams Parametars)
+ isurface?jhan‘gad (hn\der.hS\.n‘lfamHa\der. format + setPreviewDispiay (halder. SuriacaHoldsr) final}
Integer, widih: Integer, height: Integer) e i final
+ fsurfaceCreated{halder. SurlaceHolder) + stopPrevien() (("M,%
+ isurfaceDestroyed (holder: SurfaceHolder) +camera | + release() final}
+ igetHolder(): SurfaceHolder [| +takePicture (shutier: ShutterCallback, raw: PictureCallback,
+ idraw{canvas: Canvas) postview: PictureCallback, jpeg: PictureCallback) {final}

derived operations

Class

Class

A class is a classifier which describes a set of objects that share the same:

 features

¢ constraints

* semantics (meaning).

SearchService

engine: SearchEngine
query: SearchRequest

search()

Class SearchService - analysis level details

see also: https://www.uml-di

Objects

SearchService

- config: Configuration
- engine: SearchEngine

+ search(query: SearchRequest): SearchResult
- createEngine(): SearchEngine

Class SearchService - implementation level details.
The createEngine is static operation

Customer

SearchService

private:
config: Configuration
engine: SearchEngine

private:
createEngine(): SearchEngine
ublic:

search(query: SearchRequest): SearchResult

front-facing-cam:
:Customer newPatient: i =
Camera
Anonymous Instance Instance front-
instance of the newPatient of the facing-cam of the
Customer class unnamed or Camera class

see also: https://www.uml-di

unknown class

html

from
android. hardware
package.

orderPaid: Date
July 31, 2011 3:00pm

Class SearchService - attributes and operations grouped by visibility

newPatient: Patient

name = John Doe
gender: Gender = male

id: String = “38-545-137"

Instance
orderpaid of the
Date class

has value July 31,
2011 3:00 pm.

Instance
newPatient of the
Patient class

has slots with
values specified.

Abstract, Nested, Template, Interface

LinkedList

terfac
SearchRequest "E.:meﬁ”

Abstract class (italics)

Class LinkedList is nesting
the Element interface. The
Element s in scope of the

LinkedList namespace.

see also:

I i html

see also: htps:

- -y
T,n : IntegerExpression !
Array'_ - _

- elements: T [0..n]

+ get(ind: Integer): T
+ size(): Integer

| <bind»
| <T -> Customer, n -> 24>

Template class Array and
bound class Customers.
The Customers class is an
Array of 24 objects of
Customer class.

«interface»

SiteSearch

An interface

«interface»
Pageable

+ UNKNOWN_N_OF_PAGES: int =-1

+ getNumberOfPages(): int
+ getPageFormat(int): PageFormat
+ getPrintable(int): Printable

Various kinds of constraints or protocol
specifications (ordering restrictions)

SiteSearch
© m

Interface realization

SiteSearch

Search
Controller

Interface usage

Data Type, primitive type, enumeration

www.uml-di

type

«dataTypes

DateTime

DateTime data type

«dataType»
Address

house: String
street: String

city: String
country: String
postal_code: String

Structured data type

Patient

id: String {id}
name: Name

gender: Gender
birthDate: DateTime
homeAddress: Address

Attributes of the Patient class are
of data types Name, Gender,
DateTime, Address and Visit.

class-+ e.html

«primitives

Weight

Primitive data type.
Standard UML primitive
types include:

- Boolean,

- Integer,

- UnlimitedNatural,

- String.

«enumerations
AccountType

Checking Account
Savings Account
Credit Account

values are enumerated
in the model as user-
defined enumeration
literals

Operations

SQLStatement

+executeQuery(sql: String): ResultSet
#isPoolable(): Boolean
~getQueryTimeout(): int
~clearWamnings()

File

Thread

+getName(): String

+create(parent: String, child: String): File
+istFiles(): File[0.."]

~slashify(path: Siring, isDir: Boolean) : String

Operations with different visibilities
executeQuery is public, isPoolable is
protected, getQueryTimeout has
package visibility,

clearWarnings is private.

see also: https://www.uml-di I

static operations are underlined
operations have a signature, with
parameters, and a return type.

File has two static operations - create
and slashify. Create has two parameters
and returns File. Slashify is private
operation. Operation listFiles returns
array of files. Operations getName and
listFiles either have no parameters or
parameters were suppressed.

+ setDaemon(in isDaemon: Boolean)

- changeName(inout name: char(0..°])

+ gnumerate(out threads: Thread[0."]): int
+ isDaemoniretum: Boolean)

Operation setDaemon has one input
parameter, while single parameter of
changeName s both input and output
parameter. Static enumerate returns
integer result while also having output
parameter - array of threads. Operation
isDaemon is shown with return type
parameter. It is presentation option
equivalent to returning operation result
as: +isDaemon(): Boolean.

Members and multiplicity

Write constraints

Bank Account

+owner: String {owner->notEmpty(}}
+balance: Number {balance >= 0}

Bank account attribute constraints -
non empty owner and positive balance.

+owner] Cerporation
Account owner is either Person or Corporation,
{xor} is predefined UML constraint.

Bank Account

+owner: String
+balance: Number

~

ner->notEmpty()

and balance >= 0}

Bank account constraints - non empty owner and
positive balance

SoccerTeam

o Collection must be empty
1 Exactly one instance

5 Exactly 5 instances

*

Zero or more instances

autili
Math

{leaf}

goal_keeper: Player [1]
forwards: Player [2..3]

No instances or one instance

+ E: double = 2.7182818 {readOnly}
+Pl: double = 3.1415926 {readOnly}

< Random

1.1 Exactl; insta
midfielders: Player [3..4] ~actly one Instance - Math()
defenders: Player [3..4] 0..* Zero or more instances 7
+ max{long, long): long
B i in)
o 1 At least one instance 2 sin(doublel: double
+ double
i + log{double): double
(fteam_players = 11} m.n At least m but no more than n instances lng(dautle): double

Multiplicity of players for SoccerTeam
lass

see also: https://www.uml-di I

Utility: class that has only class

scoped static attributes and operations.

see also: I-d I i html

Associations

Job Year Car Design Bureau
Association Order of the ends and reading: Car - was designed in - Year Ternary association Design relating three classifiers.

Aggregation/composition Ownership Navigability

i qb
Search Query SearchService Query - o2
o Build:
e Sullger b QueryBuilder uilder
Aggregation Association end b is an attribute of SearchService A2 has unspecified navigability while B2 is navigable from A2.

class and is owned by the class.

Association qualifier

parent

file

Folder A3 H B3

Company - A3 is not navigable from B3 while B3 has unspecified navigability.

Composite Aggregation (= composition)
If folder s deleted, all files are deleted as well

Given a company and a social security number (SSN) at
59 most one employee could be found 60

see also: https://www.uml-d class-+ e.html

Generalization

Account |

see also: https://www.uml-di

el

Checking Savings Credit
Account Account Account
Checking Savings Credit
Account Account Account

Checking, Savings, and Credit Accounts are generalized by Account.

Dependency

Data I Connection
Access Pool
Data Access depends on Connection Pool
Search «usexr Search
Controler Engine
Search Controller uses Search Engine.
wcreater
DataSource - Connection

Data Source creates Connection

see also: https://www.uml-di I

html

Interfaces

Search «interface» «interface»])
Controller |~~~ SiteSearch SiteSearch [~ SearchService
ch
Cg::rroclrw ((O——— SearchService

Interface SiteSearch is used (required) by Search Controller. Interface SiteSearch is realized (implemented) by Searchservice.

html

Class diagram examples

See https://www.uml-diagrams.org/class-diagrams-examples.html

Pointers

* The UML Specification https://www.omg.org/spec/UML/About-UML/
* https://www.uml-diagrams.org/

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase
6.3.2 — Package diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Package diagrams Package diagrams

Package diagram is UML structure diagram which shows structure of the designed Sh:f;“g ShM::,:'iﬁg s::,f,;f,g Sh:n:l:ling
system at the level of packages.

T 0 T
/ : ! emerges : : | «merge»
| | | N T =~
. package I |
Elements: | «usen : | : «user | \
Fm—m e e e |mm——
* Qackage, | hic[-;e:qe
| 2rge
* packageable element, use N Shooor
o L _ ST~ opping
* dependency /‘ 3| Peyment f 71
* element imgort, usage private import :

I
I
dependency «imports | wimports
* package import, ?\/——Vi uml-diagrams.org
v i

* package merge. public

Customer import Inventory

package

see also: https://www.uml-di lass- html see also: http: I-di pa d fe htm!

Package Import

Package Element Import Package Import

A package is a namespace used to group together elements that are semantically related and might change
together. It is a general purpose mechanism to organize elements into groups to provide better structure for
system model.

"
Domain
V_leb. — — ——>>{ Presentation
Application
Search = Pagelnfo
org.hibernate — —
org hibernate " - Public import of Pagelnfo element into Search namespace from Domain package. leb 'i'"lpim';> Domain
rary Doma Imported element are added to the namespace and made visible outside the namespace Application
.
+ Catalog Public import:
org.hibernate inteitaces P - : Eiﬂ;::r'"a“ All elements are added to the namespace and made visible outside the namespace
SessionFactory Session - Account Domain
Package org.hibernate Package org.hibernate contains SessionFactory and Session. Package org.hibernate contains interfaces Al elements of Library Domain package are
SessionFactory and Session. public except for Account. €ACCESS
Search - ———— | = Web «access»
ien — === Presentation
Application
Private import of Sortinfo element into Search namespace from Domain package. Private import:
Imported element are added to the namespace but ot visible outside the namespace All elements are added to the namespace but not visible outside the namespace
69 70
see also: https: I-d rg/package-di f html see also: http: I-d o d f html
container
model
__ package
. \\ tation Layer /N
3
/
—1 1 ¥
model User Presentation
Intertace Logic
T
: depend
! lependency
— 1 ¥ batween models
Business Layer /% v
Kernel Profiles dependency
model
between packages.
T Application
~ ;
~ Y (N K Facade | ____}{
«merge» ~“emerge» i 1
. - | :
E ya | | !
W ! Y
Constructs |, Business Business Business
e Workflow Components Entities
T
i package
| «impart»
1
V i uml-diagrams.org
P Data Layer, y
Primitive yor /A Y
Types
Kernel package merges Constructs package which imports Primitive Types. - - X
The contents of Constructs is combined with the one of Kernel Data Access Service Agents
7 72
see also: http: I-di o d f html

Model Package diagram examples

See https://www.uml-diagrams.org/package-diagrams-examples.html

«model»
Layered Service

Services Layer /\

A Sorvice Vessage Service 2| | Business/\
L La
Business Intorfanes ooy ayer ver
Layer

Different notations for Models

see also: hitps: I-d rg/package-di f html

Pointers

* The UML Specification https://www.omg.org/spec/UML/About-UML/
* https://www.uml-diagrams.org/

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase
6.3.3 — Composite Structure diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

see also:

see also:

Composite Structure diagrams

Composite Structure Diagram could be used to show: internal structure of a
classifier - internal structure diagram, classifier interactions with environment

through ports, a behavior of a collaboration - collaboration use diagram.

Elements:

* class,

* part,

* port,

* connector,
* usage

html

Structured classifier

Structured classifier

Structured classifier is classifier having internal structure and whose behavior can be fully or partially
described by the collaboration of owned or referenced instances.

Online Shopping

:Shopping I, |
i
| WPR——

Different notations for structured classifiers

«subsystem» Accounting g]

internal structure
Account
Q

:Orders

:Customers

Simple ports joined directly by connector, mandatory UML notation.
Customers component part provides Account interface to Orders part.

e.html

Composite Structure diagra}:nasv

nternal structure
compartment

Bank ATM

part box

|

role, part

referenced

| scd :Display connector,
> typed by association

cr :Card Reader

internal structure /

external :Bus
Bus

html

see also:

.

multiplicity
of part

multiplicity

:Central
Processor
PIN Pad
mem :Bus|
r======-= 1
T | vitbus: Bus
By cPrinter [—— &=
b | connecor,
typed by association
—> vault
vault” role of
anonymous and 5 = e
nested class SSSING Mechaniem ic Journal
—D: Cash Cartridge[1..4] | =g | O
referenced | {3 :Cash Cartridge[1.. B
il | L ! :Security Sensor[1..]

© uml-diagrams.org

Encapsulated Classifier

Encapsulated classifier is structured classifier extended with the ability to own ports.

SearchBooks Library

Services

SearchVideo SearchPort
Inventory

Library Services is classifier encapsulated through Search Port

html

see also: h

«subsystem» Accounting £]

internal structure
Account
Q

Simple ports joined directly by connector, mandatory UML notation.
Customers component part provides Account interface to Orders part.

required
terface

Part

represents a set of instances that are owned by a containing instance of a classifyer.

all parts are destroyed when the containing classifier instance is destroyed (composition)

SearchController SearchController

sources:

engines:) i
SearchEngine[1..3] | DataSources(2] |
J

Search Controller has 1 to 3 engines - Search Engine part Two Data Sources is sources property - but not part - of Search Controller

see also: 3 -di di fe htm|

Connectors

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

«component»
Web Store &]

«component»
:Authentication

«component»
:Customers

«components
Web Store

Assembly connector between ports of Authentication and Customers components.
«component» [}
:Authentication

ICustomers

«component»
:Customers

«component»
Web Store &

A

ICustomers

«component»
:Authentication

«component»
:Customers

Assembly connector between simple ports of Authentication and Customers components.

see also: https:, I-d ucture-d e.html

81
see also:

83

searchPort

Port

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

Library
Services

L

Library
Services

searchPort[1..6]

Library SearchBooks Library
Services Services
i : SearchVideo
SearchBooks searchPort
Inventory
SearchBooks, Library
Services
searchPort[1..6]
Inventory

html

Composite structure diagram

examples

See https://www.uml-diagrams.org/composite-structure-examples.html

Component diagrams

Component diagram shows components, provided and required interfaces, ports, and relationships
between them. This type of diagrams is used in Component-Based Development (CBD) to describe
systems with Service-Oriented Architecture (SOA).

Software Engineering

Part 6 — The Unified Modeling Language * component,
* provided interface,

Elements:

6.3 — diagrams we’ll use for the design phase
6.3.4 — Component diagrams * required interface,
* port,

¢ connectors.

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng, 86
see also: htps: I-d diag; html

Component diagrams Components

\4 Component
«subsystem» WebStore £] «subsystem» Warehouses] provided
interface . . .
Lo intemal structure e A cor.npone.nt isa class represeljmr)g'a mod}JIar part of a system with encapsulated content and whose
Search Manage manifestation is replaceable within its environment.
ProductSearch Inventory Inventory . i § i)))) .
——-> O<~ A component has its behavior defined in terms of provided interfaces and required interfaces (potentially

H exposed via ports)

delegation required
prov ‘r:e“ connector interface
interface
«subsystem» Accounting £] «component» § |
internal structure | UserServices
Manage Manage | idad
OnlineShopping Orders Inventory | P interfaces»
- —>0— -l g] |UserServices Customer
«component» : =
5 UserServic «required interfaces» EJB
WeatherServices serServices |OrderServices
provided dependency
interface S ek Manage (O~ assembly connector Old notation. For backward compatibility only
Customers ball-and-socket Different notations for components
Manage {0
UserSession Customers €]
O -3 0o,
:Customers.
delegation connector
37 88
see also: http: I-di p: di fe html

see also: https://www.uml-di d fi html

Interfaces

10rder
Services

—C

User Services component requires
[0rderServices interface.

UserServices

Delegation

«component» 3:]
UserServices

IUserServices

Delegation connector from the delegating port to the UserServlet part.

«component»
Web Store &l

ISearch

«component»
:SearchEngine

Delegation handled by a single port

Weather
Forecast

WeatherServices

Weather Services component provides
(implements) Weather Forecast interface.

«component» £ |
UserServices

«provided interfaces»
|UserServices

«required interfaces»
|OrderServices

«component»
Web Store

«component»
:Authentication

ICustomers

€]

ICustomers

Delegation connector from the simple port of Authentication

component to the delegating port.

Realization

«component»
UserService

/V v\

«serviet» «DAO»
UserServiet UserDAO
Different notations for:

«component» § |
UserServices

«provided interfaces»
|UserServices

«required interfaces»
|OrderServices

«realizations»
UserServiet
UserDAO

«artifact»
UserService.jar

Component UserService realized by UserServiet and UserDAO..

89
«component» 5
Web Store
:Authentication :Customers
Assembly connector between ports of Authentication and Customers components.
«component» £]
Web Store
ICustomers
«component» «component»
:Authentication :Customers
Assembly connector between simple ports of Authentication and Customers components.
91

«component» €]
UserService

«serviet»
UserServiet

«DAO»
UserDAO

«component»

:Authentication

«component»
Web Store

«component»
:Orders

_C

«component»
:Customers

Assembly connector that assembles three parts.

Component diagram examples

See https://www.uml-diagrams.org/component-diagrams-examples.html

Deployment diagrams

Deployment Deployment diagram is a structure diagram which shows
architecture of the system as deployment (distribution) of software artifacts
to deployment targets.

Some common types of deployment diagrams are:
* Implementation (manifestation) of components by artifacts,
* Specification level deployment diagram,

* Instance level deployment diagram,
* Network architecture of the system.

see also: https://www.uml-di diagrams-refer html

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase
6.3.5 — Deployment diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Manifestation of Components by
Arti-Fari-c'

artifact

«artifact» book_club_app.war

«folders WEB-INF
wfilew «folders lib
>
| web.xml

— |
—_— .| librarys
shp-cart jar

artifact

umrd:l<

| emanifests umanwesh‘\‘:___‘\

manifestation manifestation

! \

IShoppingCart

Orders

compenent

see also: https://www.uml-d ‘component-diagrams-reference.html

Specification Level Deployment

NinAram

deployment Book Club Web Application J
device
device «devicer Sun Fire X4150 Server :
!
«JSP servers Tomeat 7 adevicer Sun SPARC Server
|
execution
«wexecutionEnvironments anvimmment adatabase s)(sluma
Catalina Serviet Container Oracle 10g
7 \
deployment
exacution ication - cscheman
environment «deployment spec» o
- b.xml aprotocols
o D TCPIP
[_club_app.war
|—1 - «scheman
deployed ~o_ «manfests Orders.
artifac -
communication
scomponents&] path
OnlineOrders ascheman
wartifacts Inventory
user_services jar
web-tools-ib jar
deployed
arifact
97
see also: https://www.uml-d di ref html
Net k Architect Di
device commun
. path
«Firewalls «Firowalls
Cisco ASA 5585-X Cisco ASA 5585.X
s7 s8
Clsoo 7613 Switchs «Switchy
Ksyi SR2016 ksys SR2016
s6
device
Web servers «Email servers «DNS servers «Database servers wAppiication servers
99
see also: https://www.uml-d di -ref html

see also:

Instance Level Deployment Diagram

deployment Book Ciub Web Application J

device
adevices : i

adevicen dbsrv-14:

«JSP server» Tomcat 7
|
execution

environment

«executionEnvironments

iOracle 10g
F——T1
deployment
execution] sscheman O
environment lsers
web.xml wprotocal»
TG

FiIP

]

communication

«database system»

wartifacts

deployed
artifact

ascheman
Inventory

wartifacts

deployed
artifact

I-d d html

Deployment diagram examples

98

See https://www.uml-diagrams.org/deployment-diagrams-examples.html

100

Software Engineering

Part 6 — The Unified Modeling Language

6.3 — diagrams we’ll use for the design phase

6.3.6 — Sequence diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng,

Sequence diagrams

execution

sd submit_comments J

feline «serviet»

:window

validate() . |

specification

retun _—

message

duration

constraint

interaction use

see also: https://www.uml-d

Y

DWRServiet
«javascripts
:Comments
| object creation
message |
validate() |
i I
:Proxy |
occurrence
specification «ajax» | [
«ajax»
l «callback» errors
1
I
1

destruction
occurrence
specification

uml-diagrams.org

Sequence diagrams

Sequence diagram is the most common kind of interaction diagram, which focuses on the message
interchange between a number of lifelines.

Types of nodes

* lifeline,

* execution specification,
* message

combined fragment
interaction use,

state invariant

continuation,

destruction occurrence.

see also: https://www.uml-d; di e

html

Lifeline

data:Stock

see also: https://www.uml-d; di e

:User

e.html

x[k]:X

102

start

occurrence

finish
occurrence

Execution

:Service

execution

Messages

:Online
Bookshop

=

Create

Lost

:Web
Client

search

search

:Online
Bookshop

Delete

search

Found

:Online
Bookshop

Reply

Synchronous
Web Client searches Online Bookshop and waits for results.

Asynchronous

Service starts Task and proceeds in parallel without waiting.

106

Combined fragment with interaction

operator

Interaction operator could be one of:

alt - alternatives

opt - option

loop - iteration

break - break

par - parallel

strict - strict sequencing
seq - weak sequencing
critical - critical region
ignore - ignore
consider - consider

assert - assertion
neg - negative

alt J [alance>0] '

accept()

©
@
KA

search_ask()

g

opt J[noerrors] I

post_comments()
—

i

r‘:ssen) |

commit() |

{t==complete}
|

notify()

loop(5,10y [size<0) |

notify() I

strict J I |
‘search_google() |

search_bing()

search_yahoo(

=
4

sﬂe [

arch_google() |

search_bing(

search_yahoo()

-
Ioop(‘loy |

'
|
add() |
[ﬁ |
break J [y>0] | |

——j save()
| [:]

Sequence diagram examples

See https://www.uml-diagrams.org/sequence-diagrams-examples.html

