
Object OrientedModeling
The Unified Modeling Language (UML)

Luis Gustavo Nardin
gnardin@emse.fr

ICM – Computer Science Major | CPS2 Engineering and Development

September 25, 2024
Based on the slides of Maxime Lefrançois – Software Engineering course

mailto:


1/61

Outline

Software Development Life Cycle

UML (Unified Modeling Language)

Use Case Diagram

Activity Diagram

State Machine Diagram

Communication Diagram

Class Diagram

Sequence Diagram

Deployment Diagram



2/61

Software Development Life Cycle



3/61

Software Development Life Cycle

1 Planning and Analysis

2 Design

3 Implement

4 Testing and Integration

5 Deployment

6 Maintenance

Source: slidesalad



4/61

SDLC Models



5/61

SDLC Models

▶ Software development processes distinguish
the development stages in the software life
cycle

▶ Use a representation formalism that
facilitates communication, organization
and verification

▶ Produce a set of artifacts that facilitate
design feedback and application evolution

Source: ScienceSoft



6/61

Software Development Methods

▶ Hierarchical functional methods
Data-Flow/SADT/SA-SD, Structure-Chart, . . .

▶ Data oriented methods
Entity-Relation, MERISE, . . .

▶ Behavior oriented methods
SA-RT, Petri Net, . . .

▶ Object oriented methods
OMT, OOA, Classe-Relation, OOD, . . .



7/61

Object-Oriented Software Development Method

At the beginning of the 90’s
▶ There were about 50 object oriented methods
▶ Related only by their consensus on common ideas (object, class, . . .)
▶ Each with its own notation, yet not able to fulfill the needs and correctly

represent systems in all application domains

Single Common Language
▶ Usable by any Object-Oriented method
▶ Cover all software development life cycle phases
▶ Compatible with contemporary production techniques



8/61

UML (UnifiedModeling Language)



9/61

Overview

▶ The UML is a general-purpose visual modeling language intended to provide
a standard way to visualize, specify, construct and document the artifacts of a
software-intensive system

▶ The UML is intentionally process independent and could be applied in the
context of different processes, but better suited to a software development
process that is

Use case driven
Architecture centric
Iterative and incremental

▶ The UML is semi-formal (i.e., provide a reasonably well defined meaning to
each construct)



10/61

Origin

▶ Based on
OMT notations (J. Rumbaugh) for the analysis and design of data-based
information systems
Booch’s method notations (G. Booch) for the design and implementation
phases
OOSE notations (I. Jacobson) for requirement analysis through “use cases”

▶ Proposed
Standardized development artifacts (models, notation, diagrams) without
standardizing the development process

▶ Important role played by RATIONAL and OMG (http://www.omg.org)

http://www.omg.org


11/61

Evolution



12/61

Contributions to UML 1.X



13/61

UML Meta-Model



14/61

UML Vocabulary



15/61

UML Diagrams

Source: UML Specification v2.5.1, p. 727 (https://www.omg.org/spec/UML/2.5.1/PDF)

https://www.omg.org/spec/UML/2.5.1/PDF


16/61

Views on the Software



17/61

Diagrams within Views on the Software



18/61

Rules of Thumb

▶ Nearly everything in UML is optional
▶ The UML provides a language to capture information that varies greatly

depending on the domain of the problem
▶ Parts of UML either do not apply to your particular problem or may not

lend anything to the particular view you are trying to convey
▶ You do not need to use every part of UML in every model you create
▶ You do not need to use every allowable symbol for a diagram type in every

diagram you create
▶ Use only what helps clarify the message you are trying to convey



19/61

Use Case Diagram



20/61

Use Case Diagram

Definition
Describes a set of actions (use cases) that some system or systems (subject)
should or can perform in collaboration with one or more external users of the
system (actors) to provide some observable and valuable results to the actors or
other stakeholders of the system(s).



21/61

Use Case

Definition
A use case is a kind of behaviored classifier that specifies a [complete] unit of
[useful] functionality performed by [one or more] subjects to which the use case
applies in collaboration with one or more actors, and which [for complete use
cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.



22/61

Actor

Definition
An actor is behaviored classifier which specifies a role played by an external entity
that interacts with the subject (e.g., by exchanging signals and data), a human
user of the designed system, some other system or hardware using services of
the subject.



23/61

Example: Online Shopping

▶ Web Customer actor uses
some web site to make
purchases online. Top level
use cases are View Items,
Make Purchase and Client
Register.



24/61

Decomposition
«include» stereotype
▶ The included use case is a

mandatory part of the including
one

«extend» stereotype
▶ The extending use case augments

the functionality of the extended
one

Generalization
▶ Generalization between use cases is similar to generalization between

classes



25/61

Decomposition

Generalization

▶ Base use case could be abstract use case
(incomplete) or concrete (complete)

▶ Specialized use case is required, not
optional, if base use case is abstract

▶ No explicit location to use specialization

▶ No explicit condition to use specialization

«extend» stereotype

▶ Base use case is complete (concrete) by
itself, defined independently

▶ Extending use case is optional,
supplementary

▶ Has at least one explicit extension location

▶ Could have optional extension condition

«include» stereotype

▶ Base use case is incomplete (abstract use
case)

▶ Included use case required, not optional

▶ No explicit inclusion location but is
included at some location

▶ No explicit inclusion condition



26/61

Example: Online Shopping



27/61

Describe Use Case Behavior
Use case behaviors may be described in a natural language text (opaque
behavior), which is current common practice, or by using UML behavior diagrams
for specific behaviors such as
▶ Activity
▶ State Machine
▶ Interaction



28/61

Activity Diagram



29/61

Activity Diagram

Description
Activity diagram is UML behavior diagram which shows flow of control or object
flow with emphasis on the sequence and conditions of the flow. The actions
coordinated by activity models can be initiated because other actions finish
executing, because objects and data become available, or because some events
external to the flow occur.



30/61

Activity

▶ Activity nodes
Action
Control
Object

▶ Actions of various kinds
Occurrences of primitive functions
Invocations of behavior
Communication actions
Manipulations of objects



31/61

Example: Online Shopping



32/61

StateMachine Diagram



33/61

State Machine Diagram

Definition
State machine diagram is a behavior diagram which shows discrete behavior of a
part of designed system through finite state transitions. State machine diagrams
can also be used to express the usage protocol of part of a system.



34/61

State Machine Diagram

▶ Behavior is modeled as a traversal of a
graph of state nodes connected with
transitions

▶ Transitions are triggered by the dispatching
of series of events

▶ During the traversal, the state machine
could also execute some activities



35/61

Example: Online Shopping User Account



36/61

Communication Diagram



37/61

Communication Diagram

Definition
Communication diagram (called collaboration diagram in UML 1.x) is a kind of
UML interaction diagram which shows interactions between objects and/or parts
(represented as lifelines) using sequenced messages in a free-form arrangement.



38/61

Communication Diagram



39/61

Example: Online Shopping



40/61

Class Diagram



41/61

Class Diagram

Definition
Class diagram is UML structure diagram which shows structure of the designed
system at the level of classes and interfaces, shows their features, constraints
and relationships - associations, generalizations, dependencies, etc.

Types of Class Diagrams
▶ Domain model diagram
▶ Implementation classes diagram



42/61

Domain Model Diagram



43/61

Implementation Classes Diagram



44/61

Classes

▶ Classes are specifications for objects
▶ Consist of (in the main)

A name
A set of attributes (aka fields)
A set of operations
✓ Constructors: initialize the object state
✓ Accessors: report on the object state
✓ Mutators: alter the object state
✓ Destructors: clean up



45/61

Operations

executeQuery is public, isPoolable –
protected, getQueryTimeout – with

package visibility, and clearWarnings is private

File has two static operations - create and
slashify. create has two parameters and
returns File. Slashify is private operation.
Operation listFiles returns array of files.
Operations getName and listFiles either

have no parameters or parameters were suppressed.

Operation setDaemon has one input parameter,
while single parameter of changeName is both
input and output parameter. Static enumerate
returns integer result while also having output

parameter – array of threads. Operation isDaemon
is shown with return type parameter.



46/61

Constraints

Non empty owner and positive balance

Account owner is either Person or Corporation

Non empty owner and positive balance



47/61

Multiplicity

Multiplicity of Players for Soccer Team class

Two or more Player actors are required to initiate
Play Game use case



48/61

Associations



49/61

Example: Online Shopping



50/61

Sequence Diagram



51/61

Sequence Diagram

Definition
▶ Sequence diagram is the most common kind of interaction diagram, which

focuses on the message interchange between a number of lifelines
▶ Sequence diagram describes an interaction by focusing on the sequence of

messages that are exchanged, along with their corresponding occurrence
specifications on the lifelines



52/61

Sequence Diagram



53/61

Example: Online Shopping



54/61

Deployment Diagram



55/61

Deployment Diagram

Definition
Deployment diagram is a structure diagram which shows architecture of the
system as deployment (distribution) of software artifacts to deployment targets.

Types of Deployment Diagrams
▶ Manifestation of components by artifacts
▶ Specification level deployment diagram
▶ Instance level deployment diagram
▶ Specification level network architecture



56/61

Manifestation of Components by Artifacts



57/61

Specification Level Deployment Diagram



58/61

Instance Level Deployment Diagram



59/61

Specification Level Network Architecture



60/61

References
▶ Fakhroutdinov, K. (2024). The Unified Modeling Language.

https://www.uml-diagrams.org

▶ OMG UML. (2017). OMG™ Unified Modeling Language™.
https://www.omg.org/spec/UML/2.5.1

https://www.uml-diagrams.org
https://www.omg.org/spec/UML/2.5.1

	Software Development Life Cycle
	UML (Unified Modeling Language)
	Use Case Diagram
	Activity Diagram
	State Machine Diagram
	Communication Diagram
	Class Diagram
	Sequence Diagram
	Deployment Diagram

