pos

MINES
Saint-Etienne

4 »d

Institut Mines-Télécom

Object Oriented Modeling

The Unified Modeling Language (UML)

Luis Gustavo Nardin
gnardin@emse.fr

ICM — Computer Science Major | CPS2 Engineering and Development

September 25, 2024

Based on the slides of Maxime Lefrancois — Software Engineering course

O3

mailto:

Outline

Software Development Life Cycle
UML (Unified Modeling Language)
Use Case Diagram

Activity Diagram

State Machine Diagram
Communication Diagram

Class Diagram

Sequence Diagram

Deployment Diagram

Software Development Life Cycle

Software Development Life Cycle

® Planning and Analysis
® Design

® Implement

O Testing and Integration
® Deployment

® Maintenance

Software Development Life Cycle (SDLC) Phases

Software Development Life Cycle (SDLC) Phases

1. Planning & Analysis - - 2. Design

. 3. Implement (or

6. Maintenance - Code)

5. Deployment - £ = - 4. Testing & Integration

Source: slidesalad

3/61

SDLC Models o

4/61

SDLC Models

» Software development processes distinguish
the development stages in the software life

cycle

» Use a representation formalism that
facilitates communication, organization

and verification

» Produce a set of artifacts that facilitate
design feedback and application evolution

TYPES OF POPULAR SDLC MODELS

SEQUENTIAL — EVOLUTIONARY

Kanban

Iterative&Incremental Model Scrum
RUP.
spiral

1 XP

Waterfall

V-model
FORMAL —> INFORMAL

Source: ScienceSoft

5/61

Software Development Methods

» Hierarchical functional methods

m Data-Flow/SADT/SA-SD, Structure-Chart, . ..

» Data oriented methods
m Entity-Relation, MERISE, . ..
» Behavior oriented methods
m SA-RT, Petri Net, ...
» Object oriented methods
m OMT, OOA, Classe-Relation, OOD, ...

5/61

Object-Oriented Software Development Method

At the beginning of the 90’s
» There were about 50 object oriented methods
» Related only by their consensus on common ideas (object, class, . . .)

» Each with its own notation, yet not able to fulfill the needs and correctly
represent systems in all application domains

Single Common Language

» Usable by any Object-Oriented method
» Cover all software development life cycle phases

» Compatible with contemporary production techniques

UML (Unified Modeling Language)

Overview

» The UML is a general-purpose visual modeling language intended to provide
a standard way to visualize, specify, construct and document the artifacts of a
software-intensive system

» The UML is intentionally process independent and could be applied in the
context of different processes, but better suited to a software development
process that is

m Use case driven
m Architecture centric
m lterative and incremental

» The UML is semi-formal (i.e., provide a reasonably well defined meaning to
each construct)

9/61

Origin

» Based on

m OMT notations (J. Rumbaugh) for the analysis and design of data-based
information systems
m Booch’s method notations (G. Booch) for the design and implementation
phases
m OOSE notations (1. Jacobson) for requirement analysis through “use cases”
» Proposed

m Standardized development artifacts (models, notation, diagrams) without
standardizing the development process

» Important role played by RATIONAL and OMG (http://www.omg.org)

10/61

http://www.omg.org

Evolution

Latest version UML 2.5.1
A
Revision Task Force, Jul 2005 UML 2.0
A
Approval OMG, Nov 1997 UML1 1
/ .
1st submission a OMG, Jan 1997
HNIFIEDo
UML partners UML1.0 HODELNG L
f LANGUAGE

Web - June 1996

OOPSLA 1995 Un|f|ed Method{
Other methods Booch method oMT OOSE

(Rumbaugh) (Jacobson)

11/61

Contributions to UML 1.X

Harel
Meyer
h
Before and after Statecharts
conditions

Booch

Booch method \ N\ Y
N ‘/
UNIFIED o B Embley

Rumbaugh > yopeung

oMT LANGUAGE
7

Jacobson /

RIURN
w [\

Shlaer - Mellor
Object lifecycles

Gamma, et al

Frameworks and patterns

HP Fusion
Operation descriptions and

message numbering

Singleton classes and

~ high-level view

Wirfs-Brock

Responsibilities
Odell

Classification

12/61

UML Meta-Model

NamedElement
A\
MultiplicityElement | TypedElement ‘ Feature ‘ | TypedElement MultiplicityElement

lﬁ S AN lll ZP

+ownerFormalParam +formalParameter
0.1 -+ s
eature eature ;
+ownerReturnParam +returnResult
0.1
+owningRarameter

Proj

=T

0.1
+ownerUpper +upperValue v
01— 0.1
MultiplicityElement 0.1 0.1 JValueSpeclﬂcaﬂon
+ownerLower +lowerValt

Based on Martin Fowler UML Distilled and Viviane Jonckers OOSD-UML course

13/61

UML Vocabulary

Basic components

Relations
Annot, Dependences
hote Associations .

Struct. Group. Generalisation Dlagrams
Use cases Package

Classes Model

Active classes Comp. Sub-system

Interface Interaction Framework

Component State machine

Collaboration

Node

+ extention mechanisms

14/61

UML Diagrams

A

Behavior
Diagram

T T T r T 1
i Component Object Activity Use Case State Machine
Class Diagram Diagram ‘ Diagram Diagram Diagram Diagram
Composite Deployment Package .
Structure D packag Interaction
Diagram iagram iagram Diagram

‘ ‘ ‘ Interaction ‘
Sequence

Profile Diagram

. Overview
Diagram Diagram

Communication
Diagram

Timing
Diagram

Figure A.5 The taxonomy of structure and behavior diagrams

Source: UML Specification v2.5.1, p. 727 (https: //www.omg.org/spec/UML/2.5.1/PDF)

15/61

https://www.omg.org/spec/UML/2.5.1/PDF

Views on the Software

Design view

Designers

Problem domain l

Process view
System integrators
Performance
Scalability

16/61

Diagrams within Views on the Software

Classes, Objects, Composite Structure
Communication, Sequences

Design view

Designers
Problem domain

Use case view

Interaction, Activity Iuie Cats_es
nteraction

Process view

System integrators
Performance
Scalability

Conceptual Physical

17/61

Rules of Thumb

\4

Nearly everything in UML is optional

The UML provides a language to capture information that varies greatly
depending on the domain of the problem

Parts of UML either do not apply to your particular problem or may not
lend anything to the particular view you are trying to convey

You do not need to use every part of UML in every model you create

You do not need to use every allowable symbol for a diagram type in every
diagram you create

Use only what helps clarify the message you are trying to convey

18/61

19/61

Use Case Diagram

Definition

Describes a set of actions (use cases) that some system or systems (subject)
should or can perform in collaboration with one or more external users of the
system (actors) to provide some observable and valuable results to the actors or

other stakeholders of the system(s).

20/61

Use Case

Definition

A use case is a kind of behaviored classifier that specifies a [complete] unit of
[useful] functionality performed by [one or more] subjects to which the use case
applies in collaboration with one or more actors, and which [for complete use
cases] yields an observable result that is of some value to those actors [or other

stakeholders] of each subject.

«authentication»
User User Sign-In
Registration :
-userCredentials
Transfer Funds +authType

Registration (O

Registration

extension points
Registration Help
User Agreement

-userProfile

extension points
Registration Help
User Agreement

21/61

Actor

Definition

An actor is behaviored classifier which specifies a role played by an external entity
that interacts with the subject (e.g., by exchanging signals and data), a human
user of the designed system, some other system or hardware using services of
the subject.

Web Client

@ - cneer,
X N (11 %/7 \%

Bank + address: Address

Student Web Client

Administrator Customer

Editor

22/61

Example: Online Shopping

» Web Customer actor uses
some web site to make
purchases online. Top level
use cases are View ltems,
Make Purchase and Client
Register.

Registered

% ﬁ/customer
Web
Customer

A

New
Customer

5

«Subsystem»
Online Shopping

|
| «include»

Make
Purchase

I «includex»

Client
Register

A

«Service»
Authentication

A

Identity
Provider

A

Credit
Payment
Service

X

PayPal

23/61

Decomposition

«include» stereotype «extend» stereotype
» The included use case is a » The extending use case augments
mandatory part of the including the functionality of the extended
one one

Deposit «include»
Funds ~

Customer /
_ phAuthentication, _ 4 (SetHelpOn
. prrep— ot 0
Registration Help_/ «extend»
Zncider

Generalization

» Generalization between use cases is similar to generalization between
classes

Web User
Authentication

Remember’
Me

Single
Sign-On

24/61

Decomposition

. . M

Generalization «extend» stereotype «include» stereotype
Bank ATM) Withdraw Bank ATM O <2Xtend» Bank ATM "\ “MCIUde> o tomer
Transaction Cash Transaction J~ ~ ~ Transaction /-~ ~ "~ \ Authentication

P Base use case could be abstract use case > Base use case is complete (concrete) by > Base use case is incomplete (abstract use
(incomplete) or concrete (complete) itself, defined independently case)

> Specialized use case is required, not > Extending use case is optional, P Included use case required, not optional
optional, if base use case is abstract supplementary > No explicit inclusion location but is

P No explicit location to use specialization P Has at least one explicit extension location included at some location

P No explicit condition to use specialization > Could have optional extension condition > No explicit inclusion condition

25/61

Example: Online Shopping

<

Customer ‘ ‘ «Servicer

Authentication <l Authentication
2

, %
dncluder ,
.
,
p
-
,

Identity
Provider

View / Update "\ “Include»

Shopping Cart

NS

N, s dncudes
AN

Calculate
Taxes and

N Shipping

\
«include» \\

A

Credit
Payment Service

A

PayPal

Payment
By PayPal

26/61

Describe Use Case Behavior

Use case behaviors may be described in a natural language text (opaque
behavior), which is current common practice, or by using UML behavior diagrams
for specific behaviors such as

> Activity
> State Machine

» [nteraction

28/61

Activity Diagram

Activity diagram is UML behavior diagram which shows flow of control or object
flow with emphasis on the sequence and conditions of the flow. The actions
coordinated by activity models can be initiated because other actions finish
executing, because objects and data become available, or because some events
external to the flow occur.

29/61

Activity

act Authenticate User (String Login_Id, String Password)

» Activity nodes

m Action in_Id
m Control -
m Object

» Actions of various kinds
m Occurrences of primitive functions
m Invocations of behavior
m Communication actions
m Manipulations of objects

Customer

Order Dept

30/61

© uml-diagrams.org

Example: Online Shopping

Ifomins Shopping

[made decision]

Add to
Shopping Cart

Update
Shopping Cart

[update
needed]

T
[done with
shopping]

View
Shopping Cart

[more
shopping]

31/61

32/61

State Machine Diagram

Definition
State machine diagram is a behavior diagram which shows discrete behavior of a
part of designed system through finite state transitions. State machine diagrams

can also be used to express the usage protocol of part of a system.

33/61

State Machine Diagram

state machine Bank ATM © uml-diagrams.org

turn off / shutDown

» Behavior is modeled as a traversal of a

tum on / startup

failure.

graph of state nodes connected with mar

transitions VL
» Transitions are triggered by the dispatching w[i f THML — %J

of series of events / Frovmr— ~

exit/ ejectCard

» During the traversal, the state machine .\[
Cuslnm;rOH Selecting H Dojﬁ

could also execute some activities

34/61

Example: Online Shopping User Account

state machine User Account {protocol

fisUniqueld()]
create/

isAccountDormant()] suspend/

-

[isVerified()]
activate!
[isUniqueld()]
[isSuspendRequested()] suspend/
[isPasswordAlert()] lock/
[isCancelRequested()] . [iIsAccountDormant(]] suspend/
el Active
[isResumeRequested()] resume/
lisLockExpired()] unlock/
[isC: [isPolicy
cancel/ cancel/
Closed
L Due()] 1) cancell

uml-diagrams.arg

35/61

36/61

Communication Diagram

Definition

Communication diagram (called collaboration diagram in UML 1.x) is a kind of
UML interaction diagram which shows interactions between objects and/or parts
(represented as lifelines) using sequenced messages in a free-form arrangement.

Communication Diagram

frame heading

or enclosin
diagram kind 9

lifeline

name of owning element

namespace diagram frame

~f ¥
interaction Online Bockshnp)

:Inventory

message

sequence
eXDTESS\On neranon

1.1: search{)f

1 - ﬁnd |_books()

guard

7‘2,3 [order complete]:
update_inventory()

% — N
:Online
Bookshop
.

lifeline class
1.2 [interested): "NAT® name
view_book()
— v
b: Book

2: checkout()

1.3 [decided to buy]: i\ife\ine

add_to_carl()
selector
2.2 [not empty(cart)]: 2.1: get_books() sclcusfomer]:
make_order() Shopping Cart
sequence
expression :Order [<t—
lifeline

@ uml-diagrams.org

38/61

Example: Online Shopping

interaction Online Bookshop J

f2.3 [order complete]:
update_inventory()

1.1: search()f

1.2 [interested]:
view_book()
1 *: find_books() _

—

:Online
Bookshop

\

2.2 [not empty(cart)]:
make_order()

—

1.3 [decided to buy]:
2: checkout()

add_to_cart()

N
2.1: get_books()

© uml-diagrams.org

39/61

40/61

Class Diagram

Definition
Class diagram is UML structure diagram which shows structure of the designed
system at the level of classes and interfaces, shows their features, constraints

and relationships - associations, generalizations, dependencies, etc.

Types of Class Diagrams
» Domain model diagram

» Implementation classes diagram

41/61

Domain Model Dia

gram

reading order

Book

abstract class

ISBN: String[D. 1] {id} Author atiributes
title: String 14 awote
;| summa 8 ‘narne: String enumeration
publisher 4 biography: String| data type
publication date \
number of pages
language wenumerations
JaS multiplicity / AccountState
generalization B L ctve
i
; Frozen
aenlity» Boak Item aentity» Account ! Closed
barcode: String [0.1] (id} |0.12 < borrowed number {id) |
stereotyped 1 tag: RFID [0..1] {id} history: History{0..*] -~ -'
class — isReferenceOnly 0.3 « reserved opened: Date
state: account
. - ccounts
aggregation
association [s
"
Library Patron
records
name name
address wsen .| address
composition -
1 Librarian
Catalog = name
- -=7" | address.
position

- nterfaces |z -~ R Uo0"
Manage

usage dependency

interface realization

42/61

Implementation Classes Diagram

interface

dependency

—

. android.view::SurfaceHolder

winterface

+ addCaliback{callback: SurfaceHolder. Callback)

+ remaveCallback(callback: SurfaceHolder,Callback)
+ setType(type: Integer)

+ setFormat{format: Integer)

+ getSurface(); Surface

ausen ausen

winterfaces
android.view::SurfaceHolder Callback

+ surfaceChanged (holder: SurfaceHolder,
format: Integer, width: Integer, height: Integer)
+ surfaceCreated(holdar: SurfaceHoider)

+ surfaceDestroyed (holder: SurfaceHolder)

android.view::SurfaceView /

+ idraw(canwas: Canvas)
+ getHolder(): SurfaceHoider

interface

realization

constructor

L3 + creales Preview(context Context)

Preview

~ mHolder: SurfaceHolder “preview

+ surfaceChanged (holder: SurfacaHolder, format:
Integer, width: Integer, height: Integer)

+ fsurfaceCreated(holder: SurfaceHolder)

+ IsurfaceDestrayed (holder: SurfaceHolder)
+IgetHolder() SurfaceHolder

+ [drawicanves: Canvas)

derived operations.

wusen

android.app::Activity

onCreate(state: Bundie)
onStart()

#onStop()

onDestroy{)

+ anCreateOptionshenu(menu: Menu): Boolean

+ anOplionsltemSelecied(iem: Menuliem): Boolean

——— generalization

CameraDemo

]~ butonClick: Buton

~ shutterCallback ShutterCallback <
~ rawCallback: PictureCallback
~ jpegCallback: PictureCallback

+ camera

- context

T class

atiributes

fonCreate(savedinstanceState: Bundle)
fonStant()
#fonStop(}
fonDestro;
+ lonGreateCptionsMenu(menu: Menu): Boolean

- camera

——— aggregation

android.hardware::Camera

+ open(camerald: Integer). Camera
+ gelParameters(). Parameters.

+ selParameters{params: Parameters)
+ (holder.

+ startPreview() {final}
+ stopPreview() {final)
+ release() {final}

+ takePicture (shutter: ShutterCallback, raw: PictureCallback,

postview: PictureCallback, jpeg: PictureCallback) {final}

43/61

Classes

SearchRequest

» Classes are specifications for objects
» Consist of (in the main)

SearchService
® A name . .
engine: SearchEngine
m A set of attributes (aka fields) query: SearchRequest
m A set of operations search()
v Constructors: initialize the object state
v’ Accessors: report on the object state Searenservics
v Mutators: alter the object state e SoaEngie

+ search(query: SearchRequest): SearchResult

V" Destructors: clean up i Semen e

44/61

Operations

File Thread
SQLStatement +getName(): String .) + setDaemon(in isDaemon: Boolean)
+creale(parent: Siring, child: String): File - changeName(inout name: char(0..*])
+executeQuery(sql: String): ResultSet +listFiles(): File[0..*] + gnumerate(out threads: Thread[0.."]): int
#isPoolable(): Boolean -slashify(path: String, isDir: Boolean) : String + isDaemon(return: Boolean)
~getQueryTimeout(): int
~clearWarmings() File has two static operations - create and Operation setDaemon has one input parameter,
L i while single parameter of changeName is both
executeQuery is public, isPoolable - SlaShl‘fi]' crfat}el 'hfas t'wo Parameters énd input andgou'tJ ut parameter. Statgic enumerate
protected, getQueryTimeout - with returns Fl e: S a§ ify is private opera‘tlon, Pt o put p " h'll B o
package visibility, and clearWarnings is private Operation 1istFiles returns array of files. returns fnteger result witlle a'so having outpu
Operations getName and 1istFiles either parameter - array of threads. Operation isDaemon
have no parameters or parameters were suppressed. is shown with return type parameter.

Constraints

Bank Account

+owner: String {owner-=notEmpty()}
+balance: Number {balance >= 0}

Non empty owner and positive balance

Bank Account

Account owner is either Person or Corporation

+owner: String

+balance: Number
&

*owner) person
I
Account | {xor}
|
+owner| Corporation

=

AN

{owner-=notEmpty()
and balance >= 0}

Non empty owner and positive balance

46/61

Multiplicity

SoccerTeam

goal_keeper: Player [1]
forwards: Player [2..3]

midfielders: Player [3..4]
defenders: Player [3..4]

{#team_player. 1}

Multiplicity of Players for Soccer Team class

o Collection must be empty

1 Exactly one instance

5 Exactly 5 instances

* Zero or more instances

0. No instances or one instance

Exactly one instance

Zero or more instances

At least one instance

m.n

At least m but no more than n instances

X

Player

Two or more Player actors are required to initiate

Play Game use case

47/61

Associations

Job

Year

Car

Association

Year

Order of the ends and reading: Car - was designed in - Year

Aggregation/composition Ownership

Search
Service

ko>——

Query
Builder

Aggregation

Composite Aggregation (= composition)

parent

file

If folder is deleted, all files are deleted as well

SearchService lﬁ@
qb: QueryBuilder Builder

Association end qb is an attribute of SearchService

class and is owned by the class.

Association qualifier

0.1

Employee

Given a company and a social security number (SSN) at

most one employee could be found.

Design

Car Year

Design Bureau

Ternary association Design relating three classifiers.
Navigability

A2 H B2

A2 has unspecified navigability while B2 is navigable from A2.

}_x_{m

A3 is not navigable from B3 while B3 has unspecified navigability.

48/61

Example: Online Shopping

class Online Shopping)

‘Web User

login_id: String {id) |
password: String T
state: UserState ™

.1

Customer

id: String {id}

«enumerations
UserState

New
Active
Blocked
Banned

address: Address
phone: Phone

0.1 1

Shopping Cart

email: String
1 Payment
1 0.* ['ig: String {id}
paid: Date
‘Account total: Real
eeoun details: String
id: String {id) 1 -
biling_address: Address * {ordered, unique}

is_closed: Boolean

open: Date
dlosed: Date
Lineltom

* {ordered, unique} | quantity: Integer
pri

line_item

ice: Price

* {ordered, unique}

* fordered,
unique)

Order

number: String {id}
ordered: Date

ship_to: Address
status: OrderStatus
total: Real

1

1

Product

id: String (id}
name: String
supplier: Supplier

line_item

wenumeration»
OrderStatus

New
Hold
Shipped
Delivered
Closed

© uml-diagrams.org

49/61

50/61

Sequence Diagram

» Sequence diagram is the most common kind of interaction diagram, which
focuses on the message interchange between a number of lifelines

» Sequence diagram describes an interaction by focusing on the sequence of
messages that are exchanged, along with their corresponding occurrence
specifications on the lifelines

Sequence Diagram

gate

synchronous

message —

execution

sd submit_comments J

lifeline «serviets

:window

validate() |

\

object creation

specification

return _

message

gate /—‘p

duration _——

constraint

interaction use

N

:DWRServlet
«javascript» A
:Comments
|
|
|
|

message
validate() [
L
I
Proxy
occurrence
specification «ajax» |
wajaxn
asynchronous
| message
I < -
«callback» errors
I
I
1

Handle Errors

destruction
occurrence
specification

uml-diagrams.org

52/61

Example: Online Shopping

:Web Customer

sd Online_Bookshop J © uml-diagrams.org

Online
Bookshop

search inventory

______________ 1)

= gp—

search results

view book description

L

]
K%__

L
- -4 — - 4 —

add to shopping cart
| |
opt
rof) Checkout |
[] |
I

54/61

Deployment Diagram

Definition

Deployment diagram is a structure diagram which shows architecture of the

system as deployment (distribution) of software artifacts to deployment targets.

Types of Deployment Diagrams
» Manifestation of components by artifacts
» Specification level deployment diagram
» Instance level deployment diagram

» Specification level network architecture

55/61

Manifestation of Components by Artifacts

wartifact» book_club_app.war

artifact

afolders WEB-INF |

«folder» lib

artifact

ﬂrma:.l<

| emanitests «mamlest»\f\s—_‘\\

manifestation I
h \ manifestation

IShoppingCart
O «companent»

Shopping Cart

«components
Orders

component

56/61

Specification Level Deployment Diagram

device

execution
environment

deployed
artifact

deployment Book Club Web Application J

«devices Sun Fire X4150 Server

«ISP servers Tomeat 7

«executionEnvironments
Catalina Servlet Container

deployment

«deplayment specs
web.xml

wartifacty
book_club_app.war

___ marnifests

scomponents £

OnlineOrders
carfacty O

user_services jar

‘web-tools-lib jar

L

adevices Sun SPARC Server
executian

environment wdalghaso sysioms

Oracle 10
Bl sschemar O
Usars
aprotocols
TCPIP

esenemas O
Orders

commurication
path

«scheman
ntory

Inves

deployed
ariifact

57/61

Instance Level Deployment Diagram

device

execution

environment

deployed
artifact

deployment Book Ciub Web Application)

wdevices wsrv-01; Sun Fire X4150 Server

«JSP server» .Tomcat 7

«wexecutionEnvironments

deployment

book_club_app.war

adeployment specs
web.xmi

. «manifest

.
OnlineOrders

j device

adevices dbsrv-14:
Sun SPARC Server
execution
environment «database systems

Oracle 109
wscherman

\‘b
aprotacol
TePIP

deployed
artifact

58/61

Specification Level Network Architecture

devi ‘communication
) path
«Firewall» «Firewalls
isco Cisco ASA 5585-X
[3
. g s7 . s8
8 N
«Routers
s «Switchs
(

59/61

References

» Fakhroutdinov, K. (2024). The Unified Modeling Language.
https://www.uml-diagrams.org

» OMG UML. (2017). OMG™ Unified Modeling Language™.
https://www.omg.org/spec/UML/2.5.1

60/61

https://www.uml-diagrams.org
https://www.omg.org/spec/UML/2.5.1

	Software Development Life Cycle
	UML (Unified Modeling Language)
	Use Case Diagram
	Activity Diagram
	State Machine Diagram
	Communication Diagram
	Class Diagram
	Sequence Diagram
	Deployment Diagram

