Software Engineering

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Engineering

Part 1 — Introduction

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Objectives of this course

The aim of this session is for you to learn about Software Engineering

Software engineering is the systematic application of engineering approaches to the
development of software.

A software engineer is a person who applies the principles of software engineering to design,
develop, maintain, test, and evaluate computer software. The term programmer is sometimes
used as a synonym, but may also lack connotations of engineering education or skills.

— Wikipedia contributors - https://en.wikipedia.org/wiki/Software_engineering

60s-80s - The Software Crisis

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.

— Edsger Dijkstra, The Humble Programmer (EWD340), 1972 Turing Award Lecture

F u n S t O r # Public loo guilty of making nuisance calls
Nick Rothwell <nick@cassiel.com=
21 Aug 1997 15:39:14 -0000

From *Computer Weekly* (UK), 21st August 1997

Awoman who was phoned repeatedly by a public lavatory asking her to
fill it with cleaning fluid had to ask BT to put a stop to the calls.

The case is one of a growing number of nuisance calls generated by
programming errors.

About 15% of all nuisance calls are caused by errors, most of which are
traceable to faulty programming, according to a BT spokesperson.

The most common type of computer-controlled nuisance call is from soft
drink vending machines which need refilling. Wrongly programmed fax
machines and modems are another cause of complaints.

In a recent case, a North Sea oil rig called the wrong number at regular
intervals to ask for a service. Potentially serious cases invalve traffic

lights, bailers and hospital refrigerators.

"The calls are mainly silent, because they are intended for modems to pick
up, but some give a recorded message,” said a BT spokesman.

Mick Rothwell, CASSIEL http://www.cassiel.com
contempaorary dance projects music synthesis and control

[Mot a new story in RISKS, but it seems to be happening more often. PGN]

source: http://catless.ncl.ac.uk/Risks/19.33.htmI%23subjl

Not fun story: Therac-25

https://catless.ncl.ac.uk/Risks/3.09.html
https://en.wikipedia.org/wiki/History of software engineering#1965 to 1985: The software crisis

MAN KILLED BY ACCIDENT WITH MEDICAL RADIATION
{excerpted from The Boston Globe, June 20, 1986, p. 1)
by Richard Saltos, Globe Staff

A series of accidental radiation overdoses from identical cancer therapy
machines in Texas and Georgia has left one person dead and two others with
deep burns and partial paralysis. according to federal investigators.

Evidently caused by a flaw in the computer program controlling the highly
automated devices, the overdoses - unreported until now - are believed to
be the worst medical radiation accidents to date.

The malfunctions occurred once last year and twice in March and April of
this year in two of the Canadian-built linear accelerators, sold under the
name Therac 25.

Two patients were injured, one who died three weeks later, at the East
Texas Cancer Center in Tyler, Texas, and another at the Kennestone Regional
Oncology Center in Marietta, Ga.

The defect in the machines was a "bug" so subtle, say those familiar with
the cases, that although the accident occurred in June 1985, the problem
remained a mystery until the third, most serious accident occurred on April
11 of this year.

Late that night, technicians at the Tyler facility discovered the cause of
that accident and notified users of the device in other cities,

https://catless.ncl.ac.uk/Risks/3.44.html

E-16 Problems (from Usenet net.aviation)

Bill janssen <janssen@mcc.com=
Wed 27 Aug 86 14:31:45 COT

A friend of mine who works for General Dynamics here in Ft. Worth wrote some
of the code for the F-16, and he is always telling me about some
neato-whiz-bang bug/feature they keep finding in the F-16;

o Since the F-16 is a fly-by-wire aircraft, the computer keeps the pilot from
doing dumb things to himself. So if the pilot jerks hard over on the
joystick, the computer will instruct the flight surfaces to make a nice and
easy 4 or 5 G flip. But the plane can withstand a much higher flip than that.
5o when they were 'flying' the F-16 in simulation over the equator, the
computer got confused and instantly flipped the plane over, killing the
pilot [in simulation]. And since it can fly forever upside down, it would
do so until it ran out of fuel.

{The remaining bugs were actually found while flying, rather than in
simulation):

o One of the first things the Air Force test pilots tried on an early F-16
was to tell the computer to raise the landing gear while standing still on
the runway. Guess what happened? Scratch one F-16. (my friend says there
is a new subroutine in the code called ‘wait_on_wheels' now...) [weight?]

0 The computer system onboard has a weapons management system that will
attempt to keep the plane flying level by dispersing weapons and empty
fuel tanks in a balanced fashion. So if you ask to drop a bomb, the
computer will figure out whether to drop a port or starboard bomb in order
to keep the load even. One of the early problems with that was the fact
that you could flip the plane over and the computer would gladly let you
drop a bomb or fuel tank. It would drop, dent the wing, and then roll off.

Many more stories: RISKS Digest

Forum on Risks to the Public in Computers and Related Systems
ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator
http://catless.ncl.ac.uk/Risks/

Examples of Volume 1, 1985
Legend: ! = Loss of Life; * = Potentially Life-Critical; S = Loss of Money/Equipment; S = Security/Privacy/Integrity Flaw

IS Arthritis-therapy microwaves set pacemaker to 214, killed patient (SEN 5 1)
*S Mariner 18: aborted due to missing NOT in program (SEN 5 2)
*S F18: plane crashed due to missing exception condition, pilot OK (SEN 6 2)
*S El Dorado brake computer bug caused recall of all El Dorados (SEN 4 4)
Second Space Shuttle operational simulation: tight loop upon cancellation of an attempted abort; required manual override (SEN 7 1)
Gemini V 100mi landing err, prog ignored orbital motion around sun (SEN 9 1)
F16 simulation: plane flipped over whenever it crossed equator (SEN 5 2)
F16 simulation: upside-down F16 deadlock over left vs. right roll (SEN 9 5)
SF BART train doors sometimes open on long legs between stations (SEN 8 5)
IRS reprogramming cost USA interest on at least 1,150,000 refunds (SEN 10 3)
Santa Clara prison data system (inmate altered release date) (SEN 10 1).
Computerized time-bomb inserted by programmer (for extortion?) (10 3)
*S Colorado River flooding in 1983, due to faulty weather data and/or faulty model; too much water was kept dammed prior to spring thaws.
S 1979 AT&T program bug downed phone service to Greece for months (SEN 10 3)
Quebec election prediction gave loser big win [1981] (SEN 10 2, p. 25-26)
SW vendor rigs elections? (David Burnham, NY Times front page, 29 July 1985)
Vancouver Stock Index lost 574 points over 22 months -- roundoff (SEN 9 1)

* ¥ ¥ X ¥ ¥

Productivity and quality issues in software ...

Due to: Causing:
" increase in size and complexity of systems " Cost and Budget Overruns
" shorter and shorter deadlines " Property Damage

" bigger and bigger teams, with multiple skills " Life and Death

Productivity and quality issues in software ...

Due to: Causing:

" increase in size and complexity of systems " Cost and Budget Overruns
" shorter and shorter deadlines " Property Damage

" bigger and bigger teams, with multiple skills " Life and Death

... called for the development of Software
Engineering

Software engineering is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of
engineering to software)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

SWEBOK: Software Engineering Body of
Knowledge

ISO/IEC TR 19759:2015 (v1 in 2005)

Describes 15 Knowledge Areas (KAs)
in the field of software engineering

) SWEBOK@ * Software Requirements

V3 -0 * Software Design

* Software Construction

* Software Testing

* Software Maintenance

* Software Configuration Management

* Software Engineering Management

* Software Engineering Process

Editors * Software Engineering Models and Methods

e R * Software Quality
* Software Engineering Professional Practice
* Software Engineering Economics

PIEEE * Computing Foundations

Ece@)computer society * Mathematical Foundations

* Engineering Foundations

Guide to the Software
Engineering Body of Knowledge

11

get your version here: https://www.computer.org/education/bodies-of-knowledge/software-engineering

How the customer explained How the project leader How the analyst designed it How the programmer wrote W custcmer really
it understood it it needed

source: https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtmi

Software Engineering

Part 2 — Software Requirements

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/softeng/

Software Requirement - definition

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

verifiable
* if possible: quantifiable
* verification at the individual level, or at the system level
* verification may be difficult or costly

may be prioritized (enables tradeoffs)

may have status values (enables project progress monitoring)

Software Requirement - definition

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

Product and Process requirements

product requirement
refinement of customer requirements into the developers' language, making implicit
requirements into explicit derived requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

process requirement

constraint on the development of the software
— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

example of product requirement: “The software shall verify that a student meets all prerequisites before he or she registers for a course”
example of process requirement: “The software shall be developed using a Agile process”

0 process requirements can be imposed by the dev organization,
the customer, a third party such as safety regulator

Functional and Nonfunctional
requirements

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, ...
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

Functional and Nonfunctional
requirements

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, ...
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

0 further classification of nonfunctional requirements:
performance, maintainability, safety, reliability, security, interoperability, ...

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

Requirements process

includes i. elicitation, ii. analysis, iii.
specification, and iv. validation.

is initiated at the beginning of a project, and
refined throughout the life cycle of the project

requirements are configuration items. They can
be managed during the life cycle of the project

Software projects are critically vulnerable when the
. requirements related activities are poorly performed.

System Development Context

Meed to map comect and close gaps

l Meed to re-evaluate and re-model

¢ Meed to re-write

Requirements *_ Requirements > Requirements W Requirements
Elicitation | Analysis Specification Validation

TME—H—!{J ta Clarify l

MNeed to map complete gap

Requirements Artifacts

Incremental and iterative requirements engineering process.
Source: Jin, Zhi. Environment modeling-based requirements engineering for software intensive systems.
Morgan Kaufmann, 2018. Chapter 1 - Requirements and Requirements Engineering

18

Requirements process - actors

users
will operate the software. Heterogenous goup involving people with different roles

customers
those who commissioned the software or who represent the target market

market analyst
for mass-market software, marketing people act as proxy customers

regulators
impose requirements of the regulatory authorities (ex, banking, public transport, utilitie)

software engineers
legitimate interest in optimizing the actual development time and costs

tradeoffs need to be negotiated
see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

Requirements process - i. elicitation

Sources Elicitation techniques
* goals of the software * interviews 8
* domain knowledge * scenarios §g
* stakeholders * prototypes ; o
* business rules * facilitated meetings %F
* operational environment * observation B
* organizational environment ® uSer StOries hups//enwikipedia org/wiki/user story

“As a <role>, | want <goal/desire> so that <benefit>.”

20

Requirements process - ii. analysis

Classify the requirements
* functional/nonfunctional
® SOUICE (e, user regutation)
on the product or the process

p ri O rity (mandatory, highly desirable, desirable, optional)
° SCOpe (global, narrow)
Volatility/stability

Requirements process -

Conceptual models
For example with the Unified Modeling Language (UML)

use case diagrams

communication diagrams

state machine diagrams

. analysis

o subject, system boundary

1'?',

multiplicity
association

actor \
_ . 1." {'r

pE

«Subsystem»

wextends 7

/&'I_ — 1

Customer

]

include
relationship

use case™

—

© uml-diagrams.orq

@

extend relationship

~F—
> actor
. \ /
aincludes Clerk W
— Payment i
y 0.° 1 ﬁ i 1
7 '§5|' ---_J___F_,_,
- multiplicity Paymant Service
| Manage
: Users

exemple: UML Use case diagrams
source: https://www.uml-diagrams.org/use-case-diagrams.html

Administrator

22

Requirements process - ii. analysis

Conceptual models

For example with the Unified Modeling Language (UM
* use case diagrams

* communication diagrams

* state machine diagrams

name of owr
or enclosing namespace

—

frame heading
diagram kind /
- —~
e pd

ling element

v

diagram frame

= ¥ =
interaction Online Bmkshop)

:Inventory

message

1.1: search{}ﬂ

guard

4
2.3 [order complete]:
update_inventory()

sequence
expression iteration lifeline class
" ‘/ 1.2 [interested: "37M€ name
¥ view_book() \ a
el 1 *: find_books(} — w
ireline h: BODk
I\“'——,} = :Online
Bookshop IS
—— ,) \
1.3 [decided to buy]: \<lifeline
2: checkout() add_to_cart()
\ N selector
I
2.2 [not Smpty{cart}]: 2.1 ge[_bncks{] sc[cu‘_ﬂ?t,omer]-

* make_order()

Shopping Cart

sequence
exXpression

:Order <

lifeline

o

uml-diagrams.org

exemple: UML Communication diagrams

source: https://www.uml-diagrams.org/communication-diagrams.html

23

Requirements process - ii. analysis

Conceptual models

For example with the Unified Modeling Language (UML)
* use case diagrams

* communication diagrams

* state machine diagrams

protocol state machine name __ protacol keyword
— / indicates protocol state machine
™,
¢ 7
state machine User Account {pmtocoy initial pseudostate
//
."'I protocol transition with
[isUniqueld()] precondition and trigger (operation)
create/

¥

l New [isAccountDormant()] suspend/

|

.

[isVerified()] Protocol transition with
activate/ f¢—— precondition, trigger (operation},
[isUniqueld()] and postcondition

protocol state

)

[isSuspendRequested()] suspend/

[isAccountDormant()] suspend/
Active p
[isResumeRequested()] resume/

[isCancelRequested()]
cancel/

/

[isCancelReguested()] [isPolicyViolated())
cancel/ cancel/

N

[isCancelRequested()] cancel/

Closed
[hasNoBalanceDue()] [isPolicyViolated()] cancel/

protocol state —
with an invariant final state

PR uml-diagrams.org

exemple: UML state machine diagrams
source: https://www.uml-diagrams.org/protocol-state-machine-diagrams.html,

Requirements process - ii. analysis

Architectural Design
“point when the requirement process overlaps with the software/system design”

Requirement allocation

Requirements need to be allocated to the architecture/design component that will be
responsible for satisfying the requirement

Demonstrates that the requirement process is not only an upfront analysis task !

Requirements process - ii. analysis

Conflicts may arise ...
* stakeholders require incompatible features
* incompatibilities between requirements and resources
* incompatibilities between functional and nonfunctional requirements

Negotiation is important
* consult with the stakeholders instead of making unilateral decisions
* refine priorization
* estimate wisely cost and time
* keep traces the decisions

see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

Requirements process - ii. analysis

formal analysis
“application of mathematically rigorous techniques for the specification, development,

and verification of software and hardware systems”
— What is formal method - https://shemesh.larc.nasa.gov/fm/fm-what.html

v costly
v important for safety-critical or security-critical software/systems
v permits static validation (for example, absence of deadlocks)

Methods
logic calculi, formal languages, automata theory, discrete event dynamic system, program
semantics, type systems, algebraic datatypes

see for example https://en.wikipedia.org/wiki/Formal methods

Requirements process -
specification

An example organization of an SRS is as follows:®

1. Purpose

1. Definitions

specification (in software engineering)

3. System overview
4 Referances
“ 1 ’ H serall description
production of a document that can be systematically reviewed,
1. System Interfaces
V4 .

evaluated, and approved
— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK) - Commnicnon o
2 e

1. Operations

2. Site adaptation requirements
3. Product functions

SOftwa re req u i re m e nts S pec iﬁ cati o n (S RS) ; gz:rs(cr::;ﬂ:::::pnDns and dependsncies

3. Specific requirements

“structured collection of the essential requirements [functions, § Sl trtcs e

3. Logical database requirement

performance, design constraints and attributes] of the software

2. Availability

H M 4 acurity
and its external interfaces
— IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation 5 Fun;u::rljﬂlmems
1. Funct; oning
2 Functi

6. Environn
1. Hardware
2. Peripherals
3. Users

7. Other

example organization of a SRS document
source: https://en.wikipedia.org/wiki/Software_requirements_specification

see also https://en.wikipedia.org/wiki/Software requirements_specification

Requirements process - iv. validation

requirement validation
“confirmation by examination that requirements (individually and as a set) define the right
system as intended by the stakeholders”

—ISO/IEC/IEEE 29148:2011 Systems and software engineering — Life cycle processes — Requirements engineering

Techniques for requirement validation
* reviews

* inspections

* prototyping

* user manual development

* model validation

* requirements testing

see for example https://en.wikipedia.org/wiki/Formal methods

Software requirements tools

-
o s o et 0 curare
I bt shou 2 8 149

. B Rete Cormt

D e T R S —
o . a8 coaly mnd s s ey oo
80 s, k. 0 ot iy

almost exclusively commercial tools

Projeet Bl Views -

Erf=lrlpuEE=EEY

Project Oraanzstor, Tools

Visure RequIrements - [SUrgical Imaging - SyStem Engineering Project { ENG - System Enqgineers) Hems (16) *[REQS] User

Apots Seting Window Hels

m-

Soring aumber]Code

1

[Dhe usex requiremets are of the trpe.
o Mukeing
= Suadurds
. Customer
+ Busmese

https://www.jamasoftware.com/solutions/software-development/

Detailed list here (see column « RM »)
https://en.wikipedia.org/wiki/List of requirements

i/t

112 SWReg Cu 20

B_Cci0
BRI

1o be transport

This section lists the raguests of Custon
.11 ES * 00010

Tealth personnel st be able to maneaver the equ

=n Priorsy Ao

User Requirements

[documeat descrives all user requirements of the Imagery System.

Customer Requirements

Ry o eview

& & Meedium

ontainer| volume
type

Linear dimensians
(33 width / overall width <

Hemarks. |

depth * height)

contaured, half mickh

[eantourd, half wikh, |
dimension sccording o,

Complet=d

PEC innavations | Commpiste FireSAT Mods

[Documents View

[T
Il I

https://visuresolutions.com/

engineering tools

© hew Document

Showing Al Documents = Sored by Mostied -

Q

o
https://www.innoslate.com/requirements-management/ 30

Software

Requirements
Software ; : : : ; z Software
. Requirements Requirements Requirements Requirements Requirements Practical :
— Requirements = S B . — . . e = . . Requirements
Process Elicitation Analysis Specification Validation Considerations
Fundamentals Tools
Definition of a ; : System . Iterative Nature
Requirements Requirements . Requirements of the

—» Software —» Process Models Soutess Classification — Definition Reviews kK i

Requirement Document Requirements

Process
5 groduct and | o5 " Elicitation _}Conceptual | 5 gystan L & Beolotori Change
rocess rocess Actors Techniques Modeling equirements rototyping Msiingeriott

Requirements Specification

Fimstional and Process Support gg}i’l:{;:ga[e Model Requirements
> Nonfunctional SR e B ey, > eduitemEifs Validation Atiributes

Requirements & Aquite Specification

Allocation

Emergent Process Quality Requirements Acceptance Requirements

Properties and Improvement Negotiation Tests Tracing

Quantifiable Formal Measuring

Requirements Analysis Requirements

System

Requirements

and Software
Requirements

Breakdown of Topics for the Software Requirements KA. Source: SWEBOK V3

Software Engineering

Part 3 — The ISO/IEC 25010 System and software quality models

ICM — Computer Science Major — Software Engineering - Part 1: Introduction

M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrancois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software quality model (ISO/IEC
25010:2011)

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

software quality
degree to which a software product satisfies stated and implied needs when used under specified conditions

— ISO/IEC 25010:2011 System and software quality models

SOFTWAREPRODUCT
QUALITY
| _ | | _ | | | | 1
unctiona Performance —— a— R o
Suitability Efficiency Compatibility m Reliability m Maintainability Portability
* Appropriateness
» Functional Recognizability - - . .
Completeness « Time Behaviour « Learnability - Maturity Confidentiality Modularity
» Functional ‘R ~oeaiioncs * Operability + Availability * Integrity * Reusability + Adaptability
i i Eaptice s User Error » Non-repudiation » Analysability +Installability
Correctness Utilization N Bt s Eoull Thleranoe
* Interoperability um e| "°’r‘f . . « Authenticity « Modifiability « Replaceability
« Functional +C i * User Interface * Recoverabili - -
A;grosrl'.:teness BRacHy Aesthetics * Accountability * Testability
: » Accessibili
1Is025000.com -

33

Quality model for Al systems (ISO/IEC
25059:2024)

https://is025000.com/index.php/en/iso-25000-standards/iso-25059

Al system product

quality
Functional | | Performance | | compatibility Usability Reliability Security | |Maintainability| | Portability
suitability efficiency
Functional Time behaviour| | Co-existence | |Appropriateness Maturity Confidentiality Modularity Installability
completeness recognisabili
P Resource Interoperability] 8 4 Availability Integrity Reusability Replaceability
Functional utilisation Learnabiility
correctness m Fault tolerance| [Non-repudation| [Analysability Adaptability
Capacity Operability
Functional Recoverability | | Accountability | | Modifiability
: User error
FRRERREREeness protection Robustness @ Authenticity Testability

Functional
adaptability @

User interface
aesthetics

Accessibility

User
contrallability 2

Transparency @

Intervenability 9

34

Software quality model (ISO/IEC
25010:2023)

software quality
degree to which the system satisfies the stated and implied needs of its various stakeholders, and thus provides value.

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

— ISO/IEC 25010:2011 System and software quality models

o

V

FUNCTIONAL TIME BEHAVIOUR CO-EXISTENCE APPROPRIATENESS ' FAULTLESSNESS
COMPLETENESS RECOGNIZABILITY

RESOURCE INTEROPERABILITY AVAILABILITY
FUNCTIONAL UTILIZATION LEARNABILITY
CORRECTNESS FAULT TOLERANCE

CAPACITY OPERABILITY
FUNCTIONAL RECOVERABILITY
APPROPRIATENESS USER ERROR

PROTECTION

M ODI FI E DGSER ENGAGEMEI\?

INCLUSIVITY

USER ASSISTANCE

SELF-
DESCRIPTIVENESS

CONFIDENTIALITY

INTEGRITY

NON-REPUDIATION

ACCOUNTABILITY

AUTHENTICITY

RESISTANCE

MODULARITY

REUSABILITY

ANALYSABILITY

MODIFIABILITY

TESTABILITY

ADAPTABILITY

SCALABILITY

INSTALLABILITY

REPLACEABILITY

OPERATIONAL
CONSTRAINT

RISK
IDENTIFICATION

FAIL SAFE

HAZARD WARNING

SAFE INTEGRATION

Evaluation process (ISO/IEC

25040:2011)

Five activities, each having different steps

https://iso25000.com/index.php/en/iso-25000-standards/iso-25040

Define the evaluation

Design the evaluation

Plan the evaluation

Execute the evaluation

Conclude the evaluation

is025000.com

Activity 1: Define the evaluation

The first step in the evaluation process is to define the scope by establishing the purpose,
evaluation criteria, target entities, and other relevant factors.

Task 1.1: Establish the purpose

The goal of this task is to define the purpose of the guality evaluation (evaluate suitability to a
specific context of use, evaluate qualitfication to a quality standard, check requirements
satisfaction, evaluate for suitability to the market, efc.).

Task 1.2: Identify target entities
The goal of this task is to identify all target entities needed for the evaluation.
Task 1.3:Define quality evaluation criteria

The quality evaluation criteria shall be defined or identified. Quality evaluation criteria are a set of
specific quality requirements used to evaluate the quality of the target entities, and can include
factors such as functional suitability, reliability, performance efficiency. compatibility, interaction
capability, maintainability, flexibility, security, safety, or their subcharacteristics.

Task 1.4: Define requirements for the rigor of evaluation

The rigor (thoroughness, precision, and strictness) of the evaluation shall be defined in order to
ensure the accuracy, reliability, and validity of the results.

Software Engineering

Part 4 — Software Engineering Process

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software engineering methods -
definition

software engineering method
organized and systematic approach to developing software for a target computer

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

objectives:

* facilitate human understanding, communication, and coordination

* aid management of software projects

* measure and improve the quality of software products in an efficient manner
* support process improvement

* provide a basis for automated support of process execution

Software development lite cycles (SDLC)

software development life cycle process history
software processes used to specify and 1970
. . « Structured programming since 1969

transform software requirements into a « Cap Gemini SDM, originally from PANDATA, the first English translation was published in 1974.
d I bl ft d SDM stands for System Development Methodology

eliveraple sortware pro uct 19805

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK) e Structured systems analysis and design method (SSADM) from 1980 onwards
» Information Requirement Analysis/Soft systems methodology
19905

» Object-oriented programming (OOP) developed in the early 1960s, and became a dominant
programming approach during the mid-1990s

Rapid application development (RAD), since 1931

» Dynamic systems development method (DSDM), since 1994

Scrum, since 1995
» Team software process, since 1998
» Rational Unified Process (RUP), maintained by 1BM since 1998
» Extreme programming, since 1999

2000s

s Agile Unified Process (AUP) maintained since 2005 by Scott Ambler
» Disciplined agile delivery (DAD) Supersedes AUP
2010s
« Scaled Agile Framework (SAFe)
s Large-Scale Scrum (LeSS)
s DevOps

source https://en.wikipedia.org/wiki/Software development process

Example of a software development life cycle

What are the Benefits and Steps in a System Development Life Cycle?

The development process begins when a need is referred to the Information Services help desh.
This aflows adequate planning and prioritization with other related or independent activities.

Typical Service Dask Requests

who may be impacted

I i g

o o

Zrmeee
visuaranilalionn e pascens
arcla s L can

AT ITIL® s the most widely aocepted

A 1% r misnagement in the world. L a cohessve set of best
e practice, drawn from the nltmdmmmh.
We support understanding and business change. —

i
o NER A AR

Analysis vs. Design
What vs. How

During Analysis During Design

* To know about the application domain and * To know how the software should work
the requirements

* Development of fine-grained models to show
* Development of a coarse-grained model to exactly what will happen when the system
show where responsibilities are, and how runs
objects interact

* Models show a message being passed, but no
worry too much about the contents of each
message

W.W. Royce, 1970

The waterfall development life cycle

—> product requirements document

—> Requirement

% —> models, schemas, business rules

= Analysis T

(—’ DES@I'I

L% —> software architecture

@ —> development, unit tests, software integration

Coding!/ ,
r— Implementation]

-‘I} —> systematic discovery and debugging of defects

Testing W

\ . . \ Maintenance

? —> installation, migration, support, maintenance

Many variants of this model

© Well-documented and well structured

© Easy to maintain

@ No prototype, late feedback to customer

® Major project risks, e.g. Implementation technology, are faced at the end of the project

Developer’s life cycle

Business Requirement

The V-model life cycle model

1980s
Tester’s life cycle
Acceptance Test
Design
» Acceptance Testin
Specification 9
System Test
System Requirement Design | Syciem Techin
& Specification *) : g
<.
=
e
S
cx. Integration Test
& Design
> High level Design >
2
=3
>
N
[
W

O
5
&
Integration Testing I
S
ol
<
Unit Test Design _Ltr
Low level Design = b Unit Testing
source: https://www.tutorialscampus.com/sdlc/v-model.htm

Coding

Planning or Cumulative Cost : .
1 Risk Analysis
Determining
Objectives
Release
- N
Evolution g "_Product
L% “evel
\ % eve opment
v S
\

spiral SDLC model

iterative SDLC model

Final Product

incremental SDLC model

source: https://www.tutorialscampus.com/sdlc/

Simplest SDLC models ...

Time

Efforts

Resources

Big Bang methodology

source: https://www.tutorialscampus.com/sdlc/

Big Bang

One main rule:
always resolve the most important issue first

Software

product

1\)

\" ®

- ol
-

Chaos model

1990s

Aqile methods (not a SDLC model!)

Erm=a _[’““9' B -Dﬂ"g'

_J J >
l[Project Start ll [teration 1 s\ lteration 2 i;w [teration 3 s\

Development Development Development

Ve _/ =n Z

No No No

\
\

Many Agile SDLC models

Lightweight methods; short, iterative development cycles; self-organizing teams; simpler designs; code refactoring; test-

driven development; frequent customer involvement; create demonstrable working product with each development cycle
10

source: https://www.tutorialscampus.com/sdlc/agile-model.htm

2001

4 values

11

Principles behind the Agile Manifesto

We follow these 12 principles:

>
>

Y VYV

VESY . YV A

Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

Welcome changing requirements, even late in development. Agile processes harness change for the customer's
competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter
timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the
job done.

The most efficient and effective method of conveying information to and within a development team is face-to-face
conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.
Simplicity--the art of maximizing the amount of work not done--is essential.
The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

source: https://agilemanifesto.org/

2001

4 values
and
12 principles

Agile vs « traditional » methods

Traditional Approach Agile Approach

Time Cos!t gl Features

Figure 1. Comparison of the project triangles for traditional and Agile approaches
(source: Awad, 2012: Beck et al_, 2001)

Agile development methods

* Dynamic System Development Methodology and RAD
(www.dsdm.org, 1995)

* Scrum (Sutherland and Schwaber, 1995)

* XP - eXtreme Programming (Beck, 1999)

* Feature Driven Development (DelLuca, 1999)

* Adaptive Sw Development (Highsmith, 2000)

* Lean Development (Poppendieck, 2003)

* Crystal Clear (Cockburn, 2004)

* Agile Unified Process (Ambler, 2005)

* DevOps (

Extreme Prog

Manage Goals Instead of Activities

e e
Ed hnrad e o
Analysis
Design
Code
Test
Production
Junmary 2000
Aanday N famdary Turuday Wednewday Tharalay Friday Satmrdan
1 2
3 4 5 [7 [3 3
Ry | Most feportant fratare T 1
edicp (a Lews/
10 T /1‘3 risl. pduf“ 15 16
*—;W. sl mon
ey > Dews/
17 TR E 20 21 22 23
b | Vel mont’ smparliant e}
o4 v Dews?
24 25 :sﬁa 27 28 20 0
ey | Learl agporlant featare
ety i Dewms/
1] i

source: http://www.extremeprogramming.org

\

////;;;;vahu;:;;\\\\
/ XP \

simplicity
communication
feedback

espect
courage

rammin

/

(XP)

v '1
P 4 -
Extreme Programiming

Planning

@ User stories are written.

@ Release planning creates the release
schedule.

@ Make frequent small releases.

@ The project is divided into iterations.
@ [teration planning starts each iteration.

Managing

@ Give the team a dedicated open work
space.

@ Set a sustainable pace.

@ A stand up meeting starts each day.
@ The Project Velocity is measured.

@ Move people arcund.

@ Fix XP when it breaks.

Designing

@ Simplicity.

@ Choose a system metaphor.

@ Use CRC cards for design sessions.

@ Create spike solutions to reduce risk.

@ No functionality is added early.

@ Refactor whenever and wherever possible.

The Rules of Extreme Programming

kE_‘l\FUIISiZE Extreme Programming Project

Tt Suvnasys
T E—
Uier Stadies l e Lisar Biory

Y P— .‘P'geu e Eugs
¥

_ s ¥ oheews | Latin : * i
Archite el oot " Redewse " pg, Ireration Micin, ATCEPANCE frort | Small

Spike — = Flaming Tests eleazes
. \ 7
e N
" ra
Spike
Coding

@ The customer s always available.

@ Code must be written to agreed standards.
@ Code the unit test first.

@ All production code is pair programmed.
@ Only one pair integrates code at a time.

@ Integrate often.

@ Set up a dedicated integration computer.
@Use collective ownership.

Testing

@ All code must have unit tests.
@ All code must pass all unit tests before it
can
be released.
@ When a bug is found tests are created.
@ Acceptance tests are run often and the score
1s published.

Let's review the values of Extreme Programming (XP) next.*.* o

ExtremeProgramming org home | XP Map | XP Values | Test framework | About the Author

Copyright 1099 Don Wells all righis rezerved

Scrum - Framework

A Scrum Master fosters an environment where

1. A Product Owner orders the work for a complex problem into a Product Backlog.

2. The Scrum Team turns a selection of the work into an Increment of value during a Sprint.
3. The Scrum Team and its stakeholders inspect the results and adjust for the next Sprint.
4

. Repeat
SCRUM sprint
FRAMEWORK Retrospective

Sprint % Sprint o
> Planning > > \ ’ Review ’

Product Sprint
Backlog Backleg

Increment

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum Team

DevOps

DevOps is a set of practices that combines software development (Dev) and IT operations (Ops). It

aims to shorten the systems development life cycle and provide continuous delivery with high

software quality. DevOps is complementary with Agile software development; several DevOps

aspects came from the Agile methOdOIOgy' — Contributors, Wikipedia https://en.wikipedia.org/wiki/DevOps

A

I There are many variants 1
Lo Y

o 3 . [
%m (@ HashiCorp 3:-%%13%962 @

ANSIBLE

.-. asana .Pivotal'rrcxcker B TeamCity
° Lucidchart @
'. L] -
Jenkins @ T r') e
ravis Cl it
circleci == Azure
y Google Cloud Platform I1'
»

XL) RELEASE
heroku

draw.io
‘ *planio
:IOWdOCk - CODESHIP budd
Google Drive er ke < l.t
- ~) |
% u Ofﬁce Google Docs P Sp Y DEPLOY
smartsheet @ghﬁy puppet .
Basecam >
@ P 8} 2 (O rackspace
mm Dropbox § *
=)
ii Microsoft Teams g @ OpsGenie
VictorOps
x) matters’ 3 __ pagerduty
i ‘j‘é BlueJeans 4% slack
AN CODE CLIMATE "i © New Relic. ﬂ snyk
> gz
i wbugsnag Nagios
splunk> LOGGLY

© git V
GitLab
ZABBIX
A
23 RAYGUN : 7 '
S dynatrace

S e
lFrog I"""..- @ SAUCELABS it T
#FitNesse © estFal
& s erndock @losmine A SENTRY ¥ &
kubernetes docker GltHUb . intercom E3eXT ICRM i) DATADOG
- cucumber riRollbar APPDYNAMICS
\hsu‘a‘:g i = Sonatype @ ZZPHYR @ BrowserStack bug - i .
@freshdesk qMETRY G QASymphony . OMNIDESK [:]SoucceClear LogicMonitor

Frm,
Team Foundation Server
https://s32860.pcdn.co/wp-content/uploads/2019/11/devops-hero-1-87966cfbc9c5713ae047551c7b22985¢c.png

Customer Operations

'
A + : -
g I Software Requirement bAP IT Infrastructure

LA R W
” |
o'. 1
. '
Soltion
W A
+ k-

Customer
Software Requirement

* DevOps is a practice of bringing development and operations teams together whereas Agile is an iterative approach that focuses on
collaboration, customer feedback and small rapid releases.

* DevOps focuses on constant testing and delivery while the Agile process focuses on constant changes.

* DevOps requires relatively a large team while Agile requires a small team.

* DevOps leverages both shifts left and right principles, on the other hand, Agile leverage shift-left principle.

* The target area of Agile is Software development whereas the Target area of DevOps is to give end-to-end business solutions and fast delivery.

* DevOps focuses more on operational and business readiness whereas Agile focuses on functional and non-function readiness.

Operations
+
IT Infrastructure

Soltion

J Devops

Source: https://www.guru99.com/agile-vs-devops.html

SCRUM Sprint
FRAMEWORK Refrospective

Sprint
’ Review ’

Increment

2.
> Planning ’ > \

Product Sprint
Backlog Backlog

Scrum Team

Software Engineering

Part 5 — Focus on the Scrum methodology

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Scrum - roles

The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

e Developers are the people in the Scrum Team that are committed to creating any aspect of a
Scrum Team usable Increment each Sprint.
Members

Create a plan for the Sprint, the Sprint Backlog;

Instill quality by adhering to a Definition of Done;
Adapt their plan each day toward the Sprint Goal; and,
Hold each other accountable as professionals.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

21

Scrum - roles

The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

e
i) Product Owner is accountable for maximizing the value of the product resulting from the
L F
Pl Oumisi work of the Scrum Team. How this is done may vary widely across organizations, Scrum

Teams, and individuals.

Develop and explicitly communicate the Product Goal,

Create and clearly communicate Product Backlog items;

Order Product Backlog items; and,

Ensure that the Product Backlog is transparent, visible and understood.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum - roles

The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

O

: Scrum Master is accountable for establishing Scrum as defined in the Scrum Guide. They do
SC,:m M:me, this by helping everyone understand Scrum theory and practice, both within the Scrum Team
and the organization.
The Scrum Master is accountable for the Scrum Team’s effectiveness. They do this by enabling
the Scrum Team to improve its practices, within the Scrum framework.
Scrum Masters are true leaders who serve the Scrum Team and the larger organization.
Serves the Scrum Team:

* Coaching the team members in self-management and cross-functionality;

. : @ * Helping the Scrum Team focus on creating high-value Increments that meet the Definition
- of Done;
Scrum Team .) .
Members * Causing the removal of impediments to the Scrum Team’s progress; and,

* Ensuring that all Scrum events take place and are positive, productive, and kept within the
timebox.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum - roles

The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

O

g2 4
Scrum Master

7

i)
{ &
Product Owner

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum Master is accountable for establishing Scrum as defined in the Scrum Guide. They do

this by helping everyone understand Scrum theory and practice, both within the Scrum Team

and the organization.

The Scrum Master is accountable for the Scrum Team’s effectiveness. They do this by enabling

the Scrum Team to improve its practices, within the Scrum framework.

Scrum Masters are true leaders who serve the Scrum Team and the larger organization.

Serves the Product Owner:

Helping find techniques for effective Product Goal definition and Product Backlog
management;

Helping the Scrum Team understand the need for clear and concise Product Backlog items;
Helping establish empirical product planning for a complex environment; and,

Facilitating stakeholder collaboration as requested or needed.

Scrum - roles

The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

O

: Scrum Master is accountable for establishing Scrum as defined in the Scrum Guide. They do
SC,:m M:me, this by helping everyone understand Scrum theory and practice, both within the Scrum Team

and the organization.
The Scrum Master is accountable for the Scrum Team’s effectiveness. They do this by enabling
the Scrum Team to improve its practices, within the Scrum framework.
Scrum Masters are true leaders who serve the Scrum Team and the larger organization.
Serves the Organization:
* Leading, training, and coaching the organization in its Scrum adoption;

” * Planning and advising Scrum implementations within the organization;

' * Helping employees and stakeholders understand and enact an empirical approach for

Stakeholders
complex work; and,

* Removing barriers between stakeholders and Scrum Teams

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum - Framework

A Scrum Master fosters an environment where

1. A Product Owner orders the work for a complex problem into a Product Backlog.

2. The Scrum Team turns a selection of the work into an Increment of value during a Sprint.
3. The Scrum Team and its stakeholders inspect the results and adjust for the next Sprint.
4

. Repeat
SCRUM sprint
FRAMEWORK Retrospective

Sprint % Sprint o
> Planning > > \ ’ Review ’

Product Sprint
Backlog Backleg

Increment

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum Team

Scrum - product backlog

The Product Backlog is an emergent, ordered list of what is needed to improve the product.

Product
Backlog

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

It is the single source of work undertaken by the Scrum Team.

ToDo List
1D Story Estimation Priority
7/ As an unauthorized User I want to create a new
account 3 1
1 As an unauthorized User [want to login 1 2
10 As an authorized User [want to logout 1 3
9 Create script to purge database 1 4
2 As an authorized User [want to see the list of items
5o that I can select one 2 5
4 As an authorized User [want to add a new item so
that it appears in the list 5 5]
3 Ac an authorized User [want to delete the selected
itern 2 7
5 As an authorized User [want to edit the selected
Item 3 a8
& As an authorized User 1 want to set a reminder for a
celected item so that [am reminded when item is
dug B 9
8 Asc an administrator [want to see the list of accounts
on login 2 10
Total 30

Example Product Backlog
Source: https://www.scrum-institute.org/The_Scrum_Product_Backlog.php

27

Scrum - sprint planning

Sprint Planning initiates the Sprint by laying out the work to be performed for the Sprint. This
‘ | resulting plan is created by the collaborative work of the entire Scrum Team.

Topic One: Why is this Sprint valuable?
Product Owner proposes how to increase the value and utility of the product
Scrum Team collaborates to define Sprint Goal

Topic Two: What can be Done this Sprint?

Developers discuss with Product Owner and select items from the Product Backlog to include in the current Sprint
Refine items, estimate how much can be done in the Sprint timebox

Topic Three: How will the chosen work get done?

Developers plan the work. Decompose Product Backlog into smaller work items

Output: Sprint Backlog: Sprint Goal, Product Backlog selected for the Sprint, Plan for delivering them

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum - sprint backlog

The Sprint Backlog is composed of the Sprint Goal (why), the set of Product Backlog items
selected for the Sprint (what), as well as an actionable plan for delivering the Increment (how)

Sprint Backlog

m— Forecast To-Do In-Progress Done

Backlog
ipsumJ duis J

Fix My Prafile aliguip
sit J i'.ﬂsumJ

doler ipsum
vale
culpa aliguip
culpa I

ipsum sit J dm'sJ
Quick Tips P
3 duis

https://www.scrum.org/ (with videos, guide) Example Sprint Backlog 29
https://www.scrumguides.org/index.html Source: https://www.scrum.org/resources/what-is-a-sprint-backlog

Filter Service
Tickets

Scrum - daily scrum

For developers only - The purpose of the Daily Scrum is to inspect progress toward the Sprint
Goal and adapt the Sprint Backlog as necessary, adjusting the upcoming planned work.

Sprint Backlog

Forecast To-Do In-Progress Done

ipsumJ duis J
aliquip
sit J ipsumJ

Fix My Profile

Filter Service

Tickets
8 culpa |
ipsum sit J dufsJ
Quick Tips P

https://www.scrum.org/ (with videos, guide) Example Sprint Backlog 30
https://www.scrumguides.org/index.html Source: https://www.scrum.org/resources/what-is-a-sprint-backlog

Scrum - sprint review

inspect the outcome of the Sprint and determine future adaptations. The Scrum Team presents
the results of their work to key stakeholders and progress toward the Product Goal is discussed.

)’ E During the event, the Scrum Team and stakeholders review what was accomplished in the Sprint

and what has changed in their environment. Based on this information, attendees collaborate on
what to do next. The Product Backlog may also be adjusted to meet new opportunities. The
Sprint Review is a working session and the Scrum Team should avoid limiting it to a presentation.

P
2-4 hours “Done” functionalities v/
/9 ahn

~——>» Updated product backlog _=

I-t -~ \) Next sprint planning date
ncremen a

H

" 0

Product owner + Scrum Master + Team + Others
https://www.scrum.org/ (with videos, guide) 31
https://www.scrumguides.org/index.html https://startinfinity.com/product-management-framework/scrum-sprint/sprint-review-vs-sprint-retrospective

Scrum - Increment and Done

An Increment is a concrete stepping stone toward the Product Goal. Each Increment is additive to
all prior Increments and thoroughly verified, ensuring that all Increments work together. In order
o to provide value, the Increment must be usable.

Increment The Definition of Done is a formal description of the state of the Increment when it meets the
guality measures required for the product

Increment

Definition of Done
[JQuality Criteria
[CJQuality Criteria

Douany o

| el oar el a 0 B & (& O
https://www.scrum.org/ (with videos, guide) 32

https://www.scrumguides.org/index.html Scrum Foundations: Increment and Done (15) source: https://youtu.be/OMTWysPmaoU

Scrum - Sprint retrospective

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

The purpose of the Sprint Retrospective is to plan ways to increase quality and effectiveness.
The Scrum Team inspects how the last Sprint went with regards to individuals, interactions,

processes, tools, and their Definition of Done.
The Scrum Team identifies the most helpful changes to improve its effectiveness.

SCRUM sprint
FRAMEWORK Refrospective

Sprint
’ Review ’

<

Increment

2.
> Planning > > \

Product Sprint
Backlog Backleg

Scrum Team

Scrum - values
(’OScrum.org

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

COURAGE

Scrum Team members have courage to
do the right thing and work on tough
problems

FOCUS

Everyone focuses on the work of the
Sprint and the goals of the Scrum Team

COMMITMENT

People personally commit to achieving
the goals of the Scrum Team

RESPECT

Scrum Team members respect each
other to be capable, independent people

OPENNESS

The Scrum Team and its stakeholders
agree to be open about all the work and
the challenges with performing the work

£ Scrum.org

34

Software Engineering

Part 6 — The Unified Modeling Language

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Engineering

Part 6 — The Unified Modeling Language
6.1 Introduction

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Development MetheAs

Acceptance Test

‘Specification

Planning or
Tester's life cycle
Design

Determining

Cumulative Cost
Objectives

System Test

REER/Aalysls

Design

Retease
Integration Test

o
&
| - L = ‘ d&
: o 1
Unie Test Dasign 77
Low level Design L—"i :

Design

System Requirer
. Ea
;h.‘

°
=

o
m |

,

=

%

*

Evolution

", Product
3
3
Review

3 bevelopment
13

/ —

A
Iteration I—X l

-

SCRUM
FRAMEWORK

Sprint
Refrospective
. |
ves
Deploynent
T—

Product
Backlog

> \
sprint
Backlog

LB ©

Increment
Scrum Team

Software Development Methods

* processes that distinguish development stages in the software life cycle.
Should:

* be modular, reduce complexity, reuseable, at the right level of abstraction

* Using a representation formalism that facilitates communication,
organization and verification

* Production of a set of artifacts that facilitate design feedback and
application evolution

* documents, models, prototypes

Existing software Development
Methods

* Hierarchical functional methods
* Data-Flow/SADT/SA-SD, Structure-Chart, ...

* Data oriented methods
* Entité-Relation, MERISE, ...

* Behaviour oriented methods
* SA-RT, Petri Net, ...

* Object oriented methods
* OMT, OOA, Classe-Relation, OOD, ...

Object-oriented SD methods

* Statement:
* at the beginning of the 90’s, there are about 50 object oriented methods,
* linked only by a consensus around common ideas (object, class, subsystems, ...)
* BUT each with its own notation,
* WITHOUT being able to fulfill all the needs and to correctly model the various fields of application.

* Definition of a single common language
* usable by any object method,
* in all phases of the life cycle,
* compatible with current production techniques.

* Definition a common unified development process
— Unified Process (obsolete, use Scrum or other more recent processes)

UML (Unified Modeling Language)

* Based on:

* OMT notations (J. Rumbaugh) for the analysis and design of data-based
information systems

* G. Booch’s method notations for the design and implementation phases
* OOSE notations (l. Jacobson) for requirement analysis through "use cases".

* Proposes:

* Standardized development artifacts (models, notation, diagrams) WITHOUT
standardizing the development process,

* Important role played by RATIONAL and OMG (http://www.omg.org/)

() v ~ ﬁtéiII-LIE]’Ui-;
. ‘U Development
|

Organization

OMG Seopns
. ° ERSION 251
U M L [] EVO | u tl O n UMLE Unified Modeling Language
Latest version UML 2.5.1
:' = = B
Revision Task Force, Jul 2005 UML 2.0 e
2
Approval OMG, Nov 1997 UML: 11 -
/ = 53 = =
1st submission a OMG, Jan 1997
UNIFIED o SPECIFICATION DICUMENTS
UML partners UML 1.0 MODELING e
f LANGUAGE
Web - June 1996 S U|\/||_ 0.9
OOPSLA 1995 Unifieg Method 0.8 e o,
Other methods Booch method OMT OOSE . :
(Rumbaugh) (Jacobson)

Contributions to UML 1.X

Harel
Meyer Gamma, et al
Statecharts
Before and after Frameworks and patterns
conditions
HP Fusion
Booch
\ Operation descriptions and
Booch method message numbering
UNIFIED Embley
Rumbaugh —— MODELING b _
OMT LANGUAGE - S{ngleton clgsses and
b \ high-level view
/ A N\
Jacobson Wirfs-Brock
OOSE Responsibilities
Shlaer - Mellor Odell
Classification

Object lifecycles

UML Meta-Model

‘ NamedElement \

MultiplicityElement TypedElement

‘ Feature \ TypedElement

StructuralFeature

‘ Property

BehavlouralFeature

MultiplicityElement

+ownerFormalParam
0.1

+formalParameter

0.1

=
: Parameter
==

‘ Operation \

+ownerUpper

0.1
‘ MultiplicityElement ‘ 0.1
+ownerLower

Based on Martin Fowler UML Distilled and Viviane Jonckers OOSD-UML course

+ownerReturnParam

+returnResult

.1
+owningHarameter

+defauitValue
0..1
+upperValue v
Sl ValueSpecificati
& alueSpecification
+HowerVal

UML Vocabulary

Basic components

— Relations
Annot, Dependences
note A .
ssociations .

Struct. Group. Generalisation Diagrams
Use cases Package
Classes Model
Active classes Comp. Sub-system
Interface Interaction Framework
Component State machine
Collaboration
Node

+ extention mechanisms

UML Diagrams

Diagram

T

Structure
Diagram

?

Class Diagram

Component
Diagram

Object
Diagram

Composite
Structure

Diagram

Deployment
Diagram

Profile Diagram

Package
Diagram

Behavior
Diagram
[| l
Activity Use Case State Machine
Diagram Diagram Diagram
Interaction
Diagram
[aY
| I
Interaction
Sequence Overview
Diagram :
Diagram
Communication Timing
Diagram Diagram

Figure A.5 The taxonomy of structure and behavior diagrams

UML Specification, v2.5.1, p727 https://wwwom: Dy ity "6f representing the same diagram at different levels of detail

Views on the Software

Design view

Designers

Problem domain l

Process view

System integrators
Performance
Scalability

Diagrams within Views on the Software

Classes, Objects, Composite Structure
Communication, Sequences

Design view

Designers

Problem domain Use case view

Use Cases

Interaction, Activity Int ti
nteraction

Process view

System integrators
Performance
Scalability

Conceptual Physical

Rules of thumb

* Nearly everything in UML is optional

* UML provides a language to capture information that varies
greatly depending on the domain of the problem.

* Parts of UML either don't apply to your particular problem or may
not lend anything to the particular view you are trying to convey.

* You don't need to use every part of UML in every model you
create.

* You don't need to use every allowable symbol for a diagram type
in every diagram you create.

* Show only what helps clarify the message you are trying to

Pointers

* The UML Specification https://www.omg.org/spec/UML/About-UML/
* https://www.uml-diagrams.org/

Software Engineering

Part 6 — The Unified Modeling Language
6.2 — diagrams we’ll use for the analysis phase

6.2.1 — Use case diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Use case diagrams

Describes a set of actions (use cases) that some system or systems
(subject) should or can perform in collaboration with one or more
external users of the system (actors) to provide some observable and
valuable results to the actors or other stakeholders of the system(s).

terminology: use case, actor, subject, extend, include, association.

see also: https://www.uml-diagrams.org/use-case-reference.html

Business Use Case Diagrams

subject,
D—/ﬂ_ business boundary

aBusiness»
association Airport business use case
husiness actor \
\\'Ib- < Group
Check-In
include
Tour Guide [_— relationship

generalization
between actors

business actor 1.7
Passenger
\

-

/

multiplicity

© uml-diagrams.org

winclude» :-ﬂ:""’

Individual
Chec k-l
. extend

- _— relationship

V. o
wextends .

Baggage
Check-|

Security o
Screening B
business use case

see also: https://www.uml-diagrams.org/use-case-reference.html

19

System Use Case Diagrams

o subject, system boundary

\;5,_

multiplicity

assoclation

actor \\
_ s 1. ¥

-

«Subsystem»

Checkout o
A)
C

extend relationship

—

Customer

]

include —
relationship

use case

© uml-diagrams.org

i
aincludes

7

Clerk /
er v

— i

—

Payment Service

Payment -
Q..
A+
7 multiplicity
| Manage
g Users

see also: https://www.uml-diagrams.org/use-case-reference.html

Administrator

20

Actors and use cases

Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the

subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which

[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

Web Client

@ «actors a_: ;
i i Customer /7 YZ\
|
:’; (LR + name: Name % %

+ address: Address
Student Web Client Bank

Administrator Customer

Editor

Generalization between actors 21
see also: https://www.uml-diagrams.org/use-case-reference.html

Actors and use cases

Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the

subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which

[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

aauthentication» -) Registration)
User Sign-In Registration
e ’ -userProfile
Registration - -
. .userCredentials extension points

+authTvoe Registration Help extension points
Transfer Funds yp User Agreement Reqgistration Help

User Agreement

O

22
see also: https://www.uml-diagrams.org/use-case-reference.html

Includes and Extends

Extends

Extend is a directed relationship that specifies how and when the behavior defined in usually supplementary
(optional) extending use case can be inserted into the behavior defined in the extended use case.

wextend»
Registration —— ==

Registration <2

Registration userProfile

extension points
Registration Help
User Agreement

extension point: Registration Help

Condition: {user clicked help link} Il‘}

/

Get Help On
Registration

extension points
Reqgistration Help
User Agreament

Registration ;'
extension points —& — (GetHelpOn
Registration
Registration Help wextends g
Includes

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

23

see also: https://www.uml-diagrams.org/use-case-reference.html

Use Case A Use Case A

Includes and Extends —_— 2

Includes

Use case include is a directed relationship between two use cases which is used to show that behavior of
the included use case (the addition) is inserted into the behavior of the including (the base) use case.

The include relationship could be used:
* to simplify large use case by splitting it into several use cases,

* to extract common parts of the behaviors of two or more use cases.

aincludes» _,! -w
-
-

-
@ gincludes
-
-
~ Withdraw -
, \\ Cash aincludes
«includes ‘

see also: https://www.uml-diagrams.org/use-case-reference.html

Customer
Authentication

24

Use Case Relationships Compared

Generalization

Extend

Include

Base use case could be
abstract use case (incomplete) or
concrete (complete).

Bank ATM T Withdraw
Transaction Cash

Bank ATM O ‘extend»
Transaction

Base use case is complete (concrete) by

itself, defined independently.

gincludes

Bank ATM
Transaction

Customer
Authentication

Base use case is incomplete (
abstract use case).

Specialized use case is required, not

optional, if base use case is abstract.

Extending use case is optional,

supplementary.

Included use case required, not
optional.

No explicit location to use
specialization.

Has at least one explicit extension

location.

No explicit inclusion location but is
included at some location.

No explicit condition to use
specialization.

Could have optional extension

condition.

No explicit inclusion condition.

see also: https://www.uml-diagrams.org/use-case-reference.html

25

Commuter Ticket vending machine Bank

Describe Use Case Behavior = "

Provide
Trip Info

Process
Trip Info

Use case behaviors may be described in a natural language text ol
(opaque behavior), which is current common practice, or by using

UML behavior diagrams for specific behaviors such as

* activity,

* state machine Purchase Ticket CO

 ve searh tems) ouned behaviors E

Request
Payment

W i

Process
Payment

[pay with card]

Authorize
Card Payment

* interaction.

,//

wactivity»
Search ltems Purchase Ticket

I Ticket
. L. Get
link between a use case and an activity Ticket
[paid with cash

& with change]

Dispense Ticket

-

Enter
Search terms

Evaluate
Results

Dispense
Change

I Change

Get
O Change

@
description using a state machine diagram

-

Show
Thank You

© uml-diagrams.org

see also: https://www.uml-diagrams.org/use-case-reference.html

Activity diagram: description of the Purchase Ticket activity

Use Case diagrams examples

See https://www.uml-diagrams.org/use-case-diagrams-examples.html

Software Engineering

Part 6 — The Unified Modeling Language
6.2 — diagrams we’ll use for the analysis phase

6.2.2 — Activity diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Activity diagrams

Activity diagram is UML behavior diagram which shows flow of
control or object flow with emphasis on the sequence and conditions of
the flow. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data
become available, or because some events external to the flow occur.

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

Activity diagrams

act Authenticate Usar (String Login_Id, String Passmrd:[/

/Dnline Shopping \

Login_Id
|
Password
\\ -/ Rendered with the frame notation for diagrams: keyword act
Authenticate User \
Login Id: String
Password: String =
@
£
o
®
.)
Login Id 0
1 =
[
Password o
O
With parameters

With swimlanes

terminology: activity, partition, action, object, control, activity edge.

30

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

«localPrecondition»
- all info was provided

- order was pre-paid

Process
Order

a.verifyBalance();
end_for

[]
/ \Ctl O n S for (Account a: accounts)
Process

«localPostcondition»
- order is complete

and verified

Types of actions
Action is a named element which represents a single atomic step within activity, i.e. that is not further
decomposed within the activity. Activity represents a behavior that is composed of individual elements that are

actions.

* Object actions include different actions on objects, e.g. create and destroy object, test object identity, specify value, etc.

* Variable actions include variable read, write, add, remove and clear actions. [User I'h]
* Invocation actions include several call actions, signal send and broadcast actions and send object action. Authentication

* Send signal action /

* Accept signal action Shi Notify
R e . - ip ofi
Wait time action > Customer
Fayment Payment

 ’ Requested Confirmed
terminology: activity, partition, action, object, control, activity edge. hour XML

31

see also: https://www.uml-diagrams.org/activity-diagrams-actions.html

Controls

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
* initial node

* flow final node /
* activity final node
* decision node

* merge node

* fork node

* join node

initial node .
: fork node jain node

merge node

decision node

activity

\ final node /

terminology: activity, partition, action, object, control, activity edge.

32

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

Controls

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
* initial node

* flow final node /
* activity final node
* decision node

* merge node

* fork node

* join node

initial node .
: fork node jain node

merge node

decision node

activity

\ final node /

terminology: activity, partition, action, object, control, activity edge.

33

see also: https://www.uml-diagrams.org/activity-diagrams-objects.html

Controls

Types of controls

Control node is an activity node:
* initial node

* flow final node

* activity final node

) dECISlon nOde o adecisionlnputs
* merge node [priority=1] rwentory < min

* fork node

[order accepted]

[order rejected]

adecisioninputFlows

..)\ [priority=2]
* join node . = [guard 1]
\([else] [guard 2]
—
Decision node with outgoing edges with guards Decision node with decision input behavior. Decision node with decision input flow.

terminology: activity, partition, action, object, control, activity edge.

34

see also: https://www.uml-diagrams.org/activity-diagrams-controls.html

Objects

Objects flow in an activity

Create nmice
Invoice
ltem . Patient
. Add to Patient - «datastore»
Shopping Cart Admission Patients

input and output pins A data store is a central buffer node for non-transient information.

Review
Order

Order

terminology: activity, partition, action, object, control, activity edge.

35

see also: https://www.uml-diagrams.org/activity-diagrams-controls.html

Activity diagrams examples

See https://www.uml-diagrams.org/activity-diagrams-examples.html

36

Software Engineering

Part 6 — The Unified Modeling Language
6.2 — diagrams we’ll use for the analysis phase

6.2.3 — State machine diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

State machine diagrams

Used for modeling discrete behavior through finite state transitions. In
addition to expressing the behavior of a part of the system, state
machines can also be used to express the usage protocol of part of a
system. These two kinds of state machines are referred to as
behavioral state machines and protocol state machines.

terminology: behavioral state, behavioral transition, protocol state, protocol transition, different
pseudostates.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

State machine diagram

protocol keyword

—-\\ / indicates protocol state machine

protocol state machine name

2

S

T ¥
state machine User Account {protocoy

[isUnigueld()]
create/

/)

[isVerified()]
activate/
[isUniqueld()]

protocol state

—

[isCancelRequested()]
cancel/

initial pseudostate

protocol transition with
precondition and trigger (operation)

Ve

isAccountDormant()] suspend/

Protocol transition with
4 precondition, trigger (operation),
and postcondition

Y [isSuspendRequested()] suspend/

[isAccountDormant(}] suspend/

Active Suspended

[isResumeRequested()] resume/

4

[isCancelRequested()]
cancel/

[isPolicyViolated()]
cancel/

~

[isCancelRequested()] cancel/

Closed

[hasMNoBalanceDue()] [isPolicyViolated()] cancel/ /

protocol state

with an invariant final state

= uml-diagrams.org

39

States

Waiting for

User Input

Simple state

Waiting for
User Input

entry/ welcome

exit/ thanks

List of internal activities

/_ Serving Customer \

\ Customer
Authentication

Composite state

Serving

Customer
o0

Composite state with hidden decomposition

40

Pseudostates

user emry/L
Waiting for ! B
User Input
[bal < min] [bal == min] n

Data End

user exit

initial/terminate(destroy)/final entry/exit choice fork/join

41

Protocol transition

A protocol transition is specialization of (behavioral) transition used for the protocol state machines which
specifies a legal transition for an operation. Protocol transition has the following features: a pre-condition
(guard), trigger, and a post-condition.

[isVerified()]
activate/

[isUnigueld()]
Active

protocol-transition ::= [pre-condition] trigger'l' [post-condition]
pre-condition ::= '[' constraint "'
post-condition ::= '[' constraint ']

42

State Machine diagram examples

See https://www.uml-diagrams.org/state-machine-diagrams-examples.html|

Software Engineering

Part 6 — The Unified Modeling Language
6.2 — diagrams we’ll use for the analysis phase

6.2.3 — Communication diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Communication diagrams

Communication diagram (called collaboration diagram in UML 1.x) is a
kind of UML interaction diagram which shows interactions between

objects and/or parts (represented as lifelines) using sequenced
messages in a free-form arrangement.

terminology: frame, lifeline, message

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

Communication diagrams

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

diag

lifeline

N

frame heading
ram kind

~ /[

name of owning element _
or enclusmq namespace diagram frame

i

mteractmn Online Bmkshnp)

:Inventory

message

sequence
expression iteration

1.1: search{}ﬁ

guard

f 2.3 [order complete]:
update_inventory()

lifeline gjass
& \/ 1.2 [interested]: "ATE name
view_book()
1 *: find_books() —_—
—_— b: Book
[:Online
Bookshop
—

2: checkout()

2.2 [not empty{cart}]:\
* make_order()

1.3 [decided to buy]: i lifeli
add_to_cart() eine

\ selector
4

2.1: get_books()

sc[c us“i’nme r]:
Shopping Cart

SEquence
expression

:Order ~=:I——=ﬁ\

lifeline

© uml-diagrams.org

46

Communication diagrams

1.2:draw()
——
A ‘B
:C 1.3:paint()
in sequence

1.2 *[k:1..n]: search(k)

2.3a.draw()

A7

A

—

n times, in sequence

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

‘B

N

2.3b:draw()

in parallel

2.3b [x=y]: draw()

1.2 *|I[k:1..n]: search(k)

——
<A

—_—

n times in parallel

‘B

guards

47

Communication diagram examples

See https://www.uml-diagrams.org/communication-diagrams-examples.html

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase

6.3.1 — Class diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Class diagrams

Class diagram is UML structure diagram which shows structure of the
designed system at the level of classes and interfaces, shows their

features, constraints and relationships - associations, generalizations,
dependencies, etc.

types of class diagrams are:
* domain model diagram,

* diagram of implementation classes.

see also: https://www.uml-diagrams.org/class-reference.html

50

Domain model

diagrams

reading order

Book 7
|
absiract class ISBN: String[0..1] {id} i Author I
o . Y altributes
g title: String X 1.+ Awrole q
T SUMMary “_ - — name: String _q____d__,xf? enumeration
publisher \) biography: String | daia type
publication date | | /
number of pages II'\ i g
language S II." agnumerations
/\,H = multiplicity ' AccountState
; r | ..t”:”. .'I|l 'HUS’E“'
generalization % / i == Active
/ ! Frozen
aentity» Book Item i «entity» Account ! Closed
T
[
barcode: String [0..1] {id} |0..12 o borrowed numbser {id} 'Y I
sterectyped 3 tag: RFID [0..1] {id} history: History[0..*] F---'
class — isReferencaOnly 0.3 - reserved opened: Date
state: AccountState
account
* * accounts
aggregation e
I'-_ —
association / ’
— /
s < Library Patron
records
namea name
T @ address suse» .- address
III - =7
! e
composition =T
-
1 ainterfaces - : -
=TT > Search == KUSER Librarian
Catalog Lo " 7=~ name
e _ .-~ | address
T - osition
i ainterfaces |- -~ wHsen P
Manage

see also: https://www.uml-diagrams.org/class-reference.html

interface realization

usage depandency

51

see also: https://www.uml-diagrams.org/class-reference.html

\ derived operations

m interface sinterfaces android.app::Activity
— android.view::SurfaceHolder # onCreate(state: Bundle)
GJ + addCallback{callback: SurfaceHolder.Callback) # onStart()
m jm——— = + removeCallback(callback: SurfaceHolder. Callback) pe= = === === , # onStop()
| + seiType(type: Integer) : # onDestroy() .
m I + setFormat(format: Integer) ! + nncre{a-teomnonshﬂenu{manu: Menu): Boalean
| + getSurface(): Surface i + onOptionsitemSelected(item: Menultem): Boalean
I
40] | . :
—_— | | i '
| ! i
(, : I _::.: WUSED : wUSEs : WLISED — generalization
— ' | !
?_,u-‘ : I"-'II 1 1
C ! winterfaces | CameraDemo
| android.view: :SurfaceHolder.Callback i
O / I ! e I buttonClick: Button
! | + surfaceChanged (holder; SurfaceHolder, I = shullerCallback:ShutterCallback <
© m— usage : format; Integer, width: Integer, height: Integer) ! = rawCallback: PictureCallback T class
) dependency I + surfaceCreated(holder: SurfaceHolder) ! - jpegCallback: PictureCallback attributes
[! + surfaceDestroyed (holder: SurfaceHolder - context
m \\ | wusen royed {) l # lonCreate{savedinstanceState; Bundle)
L'_ ! 4 ! # lonStart()
4—) i - i # fonStop()
O ! : ! | # lonDestroy()
: android.view::SurfaceView B ! + (onCreateOptionsMenu(menu: Menu): Boolean
!
Q) | + idraw(canvas: Canvas)) |
! + getHolder(): SurfaceHoldar S |
: ! |r1t:—z|rf'r|r|:.:-z ! — aggregation
| ; realization |
| I 1
(40] I ; ,
o QO 1 , | - camera
generalization | = 1
[] I
U) : Preview] android.hardware::Camera
I _ : ~preview
m Q : mHolder: SurfaceHolder : ______ + ppen{camerald: Integer). Camera
| - + getParameters(). Parameters
© m— ¥+ ucreales Preview(context: Context) + setParameters(params: Parameters)
o i e o S o it
: : ' : o + startPreview() {final
e | + [surfaceCreated(halder: SurfaceHolder) n Stoppmiawﬂ fﬁnari
+ surfaceDestroved (holder: SurfaceHoldar) + gamera | + release() {final}
+ lgetHolder(): SurfaceHolder = + takePicture (shutter: ShutterCallback, raw: PictureCallback,
+ idrawicanvas: Canvas) postview: PictureCallback, jpeg: PictureCallback) {final}

Class

Class
A class is a classifier which describes a set of objects that share the same: Customer

* features,

* constraints,

* semantics (meaning).

SearchService
SearchService private:
SearchService config: Configuration
- config: Configuration engine: SearchEngine
engina: SearchEngine - engine: SearchEngine
query: SearchRequest private:
+ search(query: SearchRequest): SearchResult createEngine(): SearchEngine
search() - createEngine(): SearchEngine public:
search(query: SearchRequest): SearchResult

Class SearchService - implementation level details.

Class SearchService - analysis level details
The createEngine is static operation

Class SearchService - attributes and operations grouped by visibility

53

see also: https://www.uml-diagrams.org/class-reference.html

Abstract, Nested, Template, Interface

LinkedList

55

SearchReguest

Abstract class (italics)

«interface»
Element

Class LinkedList is nesting
the Element interface. The
Element is in scope of the
LinkedList namespace.

see also: https://www.uml-diagrams.org/class-reference.html

- elements: T [0..n]

+ get(ind: Integer): T
+ size(): Integer

A

: «hinds
: <T -> Customer, n -> 24>
1

Customers

Template class Array and
bound class Customers.
The Customers class is an
Array of 24 objects of
Customer class.

winterface»
SiteSearch

An interface

zinterfaces
Pageable

+ UNKNOWN_N_OF _PAGES: int = -1

+ getMumberOfPages(): int
+ getPageFormat(int): PageFormat
+ getPrintable(int): Printable

Various kinds of constraints or protocol
specifications (ordering restrictions)

SiteSearch
(O—— SearchService

Interface realization

SiteSearch
Search
Controller C

Interface usage

54

Objects

:Customer

newPatient:

front-facing-cam:

Camera

newPatient: Patient

Anonymous
instance of the
Customer class

Instance
newPatient of the
unnamed or
unknown class

see also: https://www.uml-diagrams.org/class-reference.html

Instance front-
facing-cam of the
Camera class
from
android.hardware
package.

orderPaid: Date
July 31, 2011 3:00pm

id: String = “38-545-137"
name = John Doe
gender: Gender = male

Instance
orderPaid of the
Date class

has value July 31,
2011 3:00 pm.

Instance
newPatient of the
Patient class

has slots with
values specified.

55

Data Type, primitive type, enumeration

type

adataType»
DateTime

DateTime data type

edataType»
Address

house: String
street: String

city: String

country: String
postal_code: String

Structured data type

Patient

id: String {id}

name: Name

gender: Gender
birthDate: DateTime
homeAddress: Address
visits: Visit[1.."]

Attributes of the Patient class are
of data types Name, Gender,
DateTime, Address and Visit.

see also: https://www.uml-diagrams.org/class-reference.html

wprimitive»
Weight

Primitive data type.
Standard UML primitive
types include:

- Boolean,

- Integer,

- UnlimitedNatural,

- String.

senumeration»
AccountType

Checking Account
Savings Account
Credit Account

values are enumerated
in the model as user-
defined enumeration
literals

56

Operations

SQLStatement

File

+axecuteQuery(sql: String): ResultSet
#isPoolable(): Boolean
~getQueryTimeout(): int
-clearWarnings()

Operations with different visibilities
executeQuery is public, isPoolable is
protected, getQueryTimeout has
package visibility,

clearWarnings is private.

see also: https://www.uml-diagrams.org/class-reference.html

+getName(): String
+create(parent: String, child: String): File
+listFiles(): File[0.."]

-slashify(path: String, isDir: Boolean) : String

Thread

+ setDaemon(in isDasmon: Boolean)

- changeMame(inout name: char[0..”])

+ enumerate(out threads: Thread[0..7]): int
+ isDaemon(return: Boolean)

static operations are underlined
operations have a signature, with
parameters, and a return type.

File has two static operations - create
and slashify. Create has two parameters
and returns File. Slashify is private
operation. Operation listFiles returns
array of files. Operations getName and
listFiles either have no parameters or
parameters were suppressed.

Operation setDaemon has one input
parameter, while single parameter of
changeName is both input and output
parameter. Static enumerate returns
integer result while also having output
parameter - array of threads. Operation
isDaemon is shown with return type
parameter. It is presentation option
equivalent to returning operation result
as: +isDaemon(): Boolean.

57

Write constraints

Bank Account
+owner! pergon

+owner: String

A " | +balance: Number
Bank Account ceoun | {xor} £
] A"
LY
+ . i ==
+g1.-.;nar. S‘: ng LDWHE rl nOLE:I P[T}YU} c i {owner->notEmpty()
alance: Mumber {balance == 0} +owner] Corporation and balance >= 0}
Bank account attribute constraints - Account owner is either Person or Corporation, Bank account constraints - non empty owner and
non empty owner and positive balance. {xor} is predefined UML constraint. positive balance

58

see also: https://www.uml-diagrams.org/class-reference.html

Members and multiplicity

SoccerTeam

goal_keeper: Player [1]
forwards: Player [2..3]
midfielders: Player [3..4]
defenders: Player [3..4]

P
Tt

s
T

{#team_players = 11} B}

Multiplicity of players for SoccerTeam
class

see also: https://www.uml-diagrams.org/class-reference.html

autility»
Math {leaf}

+ E: double = 2.7182818 {readOnly}
+ Pl: double = 3 1415926 {r nl

= m I r: m

o Collection must be empty

1 Exactly one instance

5 Exactly 5 instances

* Zero or more instances

0..1 No instances or one instance

1..1 Exactly one instance

0..* Zero or more instances

1..* At least one instance

m..n At least m but no more than n instances

- Math()
+ max(int,_intl: in

+ max(long, lonal: lon
+ sin{double):; double
+ cos{double): double
+ log(double): double

Utility: class that has only class

scoped static attributes and operations.

59

Associations

Car " Year

was designed in
Job Year Car Year Design Bureau

Association Order of the ends and reading: Car - was designed in - Year Ternary association Design relating three classifiers.

Aggregation/composition Ownership Navigability

. gb
Search Query SearchService = Query N _ o
i < i . Builder
Service Builder gb: QueryBuilder
Aggregation Association end qb is an attribute of SearchService A2 has unspecified navigability while B2 is navigable from A2.

class and is owned by the class.

parent i Associati lifi
, SSociation quallrier
Folder '—* File A3 3¢ B3
1
Composite Aggregation (= composition) o 0.1))) - N
If folder is deleted, all files are deleted as well Company |SSN: String Employee A3 is not navigable from B3 while B3 has unspecified navigability.
Given a company and a social security number (SSN) at
most one employee could be found. 60

see also: https://www.uml-diagrams.org/class-reference.html

Generalization

Account
Checking Savings Credit
Account Account Account
Account
Checking Savings Credit
Account Account Account

Checking, Savings, and Credit Accounts are generalized by Account.

see also: https://www.uml-diagrams.org/class-reference.html

61

Interfaces

i interface .
Search | = = «interface» ;.’“ s : <] — — - SearchService
Controller SiteSearch saearc
SiteSearch SiteSearch
Search {: (+——— SearchService
Controller
Interface SiteSearch is used (required) by Search Controller. Interface SiteSearch is realized (implemented) by SearchService.

see also: https://www.uml-diagrams.org/class-reference.html

Dependency

Data IR Connectlion
Access Pool

Data Access depends on Connection Pool

Search wusen Search

Controler Engine

Search Controller uses Search Engine.

wCreaten
DataSource | — — — == Connection

Data Source creates Connection

see also: https://www.uml-diagrams.org/class-reference.html

Class diagram examples

See https://www.uml-diagrams.org/class-diagrams-examples.html

64

Pointers

* The UML Specification https://www.omg.org/spec/UML/About-UML/
* https://www.uml-diagrams.org/

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase

6.3.2 — Package diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Package diagrams

Package diagram is UML structure diagram which shows structure of the designed
system at the level of packages.

Elements:

* package,
packageable element,

dependency,

element import,

package import,

package merge.

see also: https://www.uml-diagrams.org/class-reference.html

67

Package diagrams

1] 1]
Web Mobile Phone Mail
Shopping Shopping Shopping Shopping
| ' | I | |
- | ! | :
| | amerge I | | I wmerges I
I | I I P
package | | | | I
| gusen | | | wuses |
F-------- - - "—--"—-"—"—-"—"“—"=—"—"—""—————- |- T T
I | package
| T merge
| _— 1\ :
I
wusen waCCessy Shopoi
e o T~ Pping
= Payment /i- = Cart
[_ |
usage | private import |
dependency aimport» | wimports
: | uml-diagrams.org
LY \
public
Customer import Inventory
package

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package

Package

A package is a namespace used to group together elements that are semantically related and might change
together. It is a general purpose mechanism to organize elements into groups to provide better structure for

system model.

org.hibernate
org.hibernate P Library Domain
_] + Catalog
winterfaces winterface» + Patron
org.hibernate SessionFactory Session winterface» ainterfaces + Librarian
SessionFactory Session = Account
Package org.hibernate Package org.hibernate contains SessionFactory and Session. Package org.hibernate contains interfaces All elements of Library Domain package are

SessionFactory and Session. public except for Account.

69

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Import

Element Import

Domain

Search

—

Pagelnfo

Public import of Pagelnfo element into Search namespace from Domain package.
Imported element are added to the namespace and made visible outside the namespace

Search

HACCESED

Domain

=

Sortinfo

Private import of Sortinfo element into Search namespace from Domain package.
Imported element are added to the namespace but not visible outside the namespace

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package Import

[] [1

Web

Application |~~~ == Presentation

1 |

Web wimports)
Application [= Domain

Public import:
All elements are added to the namespace and made visible outside the namespace

o —
HACCESSH
.ﬁ.pph::;iun ————— = Presentation

Private import:
All elements are added to the namespace but not visible outside the namespace

70

Package merge

Kernel Profiles

- 7
e r

"
emerges L+ «merges

N £

Constructs

|
: wimports
I
1Y
Primitive
Types

Kernel package merges Constructs package which imports Primitive Types.
The contents of Constructs is combined with the one of Kernel

71

«model» Layered Application
container
model
package
o \ Presentation Layer /\
Model dia gra i
> /
-] 1 '
model User Presentation
Interface Logic
H
I
] dependency
| ¢ hetwean models
Business Layer /™ \L,
model —| dependency
N between packages
I Application
___________ Facade N
| 1
1
| i !
|
1V 1V 1Y
1 Business Business Business
T — Workflow Components Entities
package
I
1
i 1di
| uml-diagramms.org
Data Layer /™, .I'il,r
model
\
—])
- —7 Data Access Service Agents
see also: https://www.uml-diagrams.org/package-diagrams-reference.html

72

Model

amodel»
Layered Service

Services Layer /N

| service £\ BusinessZ\
Busi & Service Message :am? - = = 'ﬁ:"::
253;1:;55 Interfaces Types v ’

Different notations for Models

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package diagram examples

See https://www.uml-diagrams.org/package-diagrams-examples.html

Pointers

* The UML Specification https://www.omg.org/spec/UML/About-UML/
* https://www.uml-diagrams.org/

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase

6.3.3 — Composite Structure diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Composite Structure diagrams

Composite Structure Diagram could be used to show: internal structure of a
classifier - internal structure diagram, classifier interactions with environment
through ports, a behavior of a collaboration - collaboration use diagram.

Elements:
* class,
* part,
* port,

connector,

* usage

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Composite Structure diag rams oo
Bank ATM /

. port
part box \ internal structure

.)& scd :D[splay connector mdm: Modem —_c
__‘__,,--"F’ typed by association
et / 1B required
external :Bus g
role, part ‘Bus interface
cr :Card Reader
‘ :Central :Crypto
f Processor Processor
:PIN Pad multiplicity
referenced - —%'Ol part
’ 4

role \ [——————— |
:Memory
| e | vitbus: Bus
kgl :Printer 4\

| connector,

R
typed by association
/,—"_“b- vault

“vault” role of

anonymous and i . B

nested class dlepensing Mechaniem :Electronic Journal

P - N __muinplir,rry

of role

)54
:Security Sensor[1..*]

referenced =]
role g | L

© uml-diagrams.org

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Structured classifier

Structured classifier

Structured classifier is classifier having internal structure and whose behavior can be fully or partially
described by the collaboration of owned or referenced instances.

«subsystem» Accounting 2 |

Online Shopping internal structure
Account

______ g] Q,]

|
—— :Orders
:Orders :Customers

:Shopping
Cart

|
|
[A—

Simple ports joined directly by connector, mandatory UML notation.

Different notations for structured classifiers
Customers component part provides Account interface to Orders part.

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Encapsulated Classifier

Encapsulated classifier is structured classifier extended with the ability to own ports.

«subsystem» Accounting 2 |
SearchBooks Library internal structure
Services Account
SearchVideo D] /(_, % &]
:Orders | :Customers
Inventory
Library Services is classifier encapsulated through Search Port Simple ports joined directly by connector, mandatory UML notation.

Customers component part provides Account interface to Orders part.

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Part

represents a set of instances that are owned by a containing instance of a classifyer.

all parts are destroyed when the containing classifier instance is destroyed (composition)

SearchController SearchController
o i
engines: | sources: |
SearchEngine[1..3] | DataSources[2]
e J
Search Controller has 1 to 3 engines - Search Engine part Two Data Sources is sources property - but not part - of Search Controller

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Port

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

Library
Services

searchPort

searchPort[1..6]

Library
Services

searchPort:
SearchBooks

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Library
Services

SearchBooks,
SearchVideo

SearchBooks

SearchVideo

Inventory

Library
Services

C’)>(|] searchPort[1..6]

Inventory

Library
Services

searchPort

82

Connectors

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

«component»
Web Store $j
«component» [} {] «component»
:Authentication :Customers
«component»
Assembly connector between ports of Authentication and Customers components. E Web Store
«components [
:Authentication
ICustomers E
(O—- 1 «component»
«component» £] :Customers
Web Store Assenlgly,eopnsetenthat @s three parts.
ICustomers :Orders
«components [} © {1 «components
:Authentication :Customers

Assembly connector between simple ports of Authentication and Customers components.

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

83

Composite structure diagram
examples

See https://www.uml-diagrams.org/composite-structure-examples.html

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase

6.3.4 — Component diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Component diagrams

Component diagram shows components, provided and required interfaces, ports, and relationships
between them. This type of diagrams is used in Component-Based Development (CBD) to describe
systems with Service-Oriented Architecture (SOA).

Elements:

* component,

* provided interface,
* required interface,
* port,

* connectors.

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

Component diagrams

internal structure

compartment

/ structured classifier — subsystem component \

ProductSearch

port

provided
interface

OnlineShopping

provided
interface

UserSession

Oo—

«subsystem» WebStore 2] «subsystem» Warehouses £) provided
interface
s internal structure internal structure
Search Manage
i 9 ;D :SearchEngine —C - = =>0—] Oo—J :Inventory (—O—L10 :—':
|
|
delegation required |
connector interface | dependency
bsystem» A i !
A pe—— «subsystem» Accounting 2 I
internal structure :
Manage Manage |
2] Orders] Inventory |
+—O0—1 G —>0—11—0-1 -~
] :Shopping Cart C] :Orders C
1 i
required
dependency M interface
anage
; assembly connector assembly connector
UserSession 2 ball-and-socket C“"'""'""’SI ball-and-socket
Manage
L= J
2] Customers £
: T =~ = =30—{ }—O—{
:Authentication C] :Customers

delegation connector

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

i
delegation connector

37

Components

Component

A component is a class representing a modular part of a system with encapsulated content and whose

manifestation is replaceable within its environment.

A component has its behavior defined in terms of provided interfaces and required interfaces (potentially

exposed via ports)

«component» & |
UserServices

«component»

g]

WeatherServices UserServices

«provided interfaces»
IUserServices

«required interfaces»
|OrderServices

Different notations for components

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Customer
EJB

—

Old notation. For backward compatibility only

88

Interfaces

g]

User Services component requires
IOrderServices interface.

|Order
Services

UserServices —C

Weather

«component» £ |
UserServices

Forecast

o_

WeatherServices

Weather Services component provides
(implements) Weather Forecast interface.

«provided interfaces»
IUserServices

«required interfaces»
IOrderServices

89

Realization

«component»
UserService

/ﬂ v"\

2

S

«component» 3 |
UserServices

«provided interfaces»
IUserServices

«required interfaces»
|OrderServices

«component»
UserService

«realizations»
UserServiet
UserDAO

wserviet»
UserServlet

¢

«serviet» «DAO»
UserServiet UserDAO
Different notations for:

«artifact»
UserService.jar

«DAO»
UserDAO

Component UserService realized by UserServlet and UserDAO..

90

Delegation

IUserServices

Oo—f

«component»
UserServices

]\ «serviet»

:UserServiet

Delegation connector from the delegating port to the UserServlet part.

ISearch

o—cj\ifgﬂ)
] «components

«components
Web Store

g]

:SearchEngine

Delegation handled by a single port

«component»
Web Store
ICustomers
g —t
«component»
:Authentication
ICustomers

Delegation connector from the simple port of Authentication
component to the delegating port.

91

Assembly

«component»
Web Store

g]

J

«component» [
:Authentication

1

] «component»
:Customers

Assembly connector between ports of Authentication and Customers components.

«component»
Web Store
|Customers
«components [} @
:Authentication

g]
g]

«component»
:Customers

Assembly connector between simple ports of Authentication and Customers components.

:Authentication

«component» [}—

«components [
:Orders

«component»
Web Store

Lustomers

—O0—101 .1:(:ompt)nent$»:l

:Customers

]_

Assembly connector that assembles three parts.

92

Component diagram examples

See https://www.uml-diagrams.org/component-diagrams-examples.html

93

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase

6.3.5 — Deployment diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Deployment diagrams

Deployment Deployment diagram is a structure diagram which shows
architecture of the system as deployment (distribution) of software artifacts
to deployment targets.

Some common types of deployment diagrams are:
* Implementation (manifestation) of components by artifacts,

* Specification level deployment diagram,

* Instance level deployment diagram,

* Network architecture of the system.

see also: https://www.uml-diagrams.org/deployment-diagrams-reference.html

Manifestation of Components by
Arti-Fari-c'

artifact

\'\—b' sfolders WEB-INF
artifact
Y afiler afolders lib /\

sarifact» book_club_app.war

L-1rli[:1:[<-—-—'— web.xml i/
— ' .
]] alibrarys ulibrarys '3’
shp-cart.jar orders.jar a
T \
! \ web-tools-lib.jar
! \
/ \
[\
! \
i !
! \

ff «manifests «manifest»‘;':i——*‘\

manifestation))
manifestation

! !
4 N
|ShoppingCart 2 | |Orders g
(O—1 «components []—@—[] wcomponents
Shopping Cart Orders

component

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

Specification Level Deployment

DY

aAaNNyraarm

deployment Book Club Web Application)

device

R

axacution
environment

deployad

artifact <

«devices Sun Fire X4150 Server

#JSP servers Tomcat T

/ device

execution
environment

N

aprotocols
TCRIP

f,._.u-br
sexecutionEnvironments
N Catalina Servlet Container
deployment
specification
HH-H sdeployment spacs
=] web.xml
riifact D ul
wartifacts
_,___.a—-—-—'i“" book_club_app.war
_— [~ o
L] =~ _ umanifests
T
e
N
\ - scompaonents £]
OnlineOrders

\ L) aartifacts D

{ct
user_services.jar

web-tools-lib.jar

/

communication
path

Oracle 10g
> wschemas Q
Usears
«schemas O
Orders

sdevicer Sun SPARC Server

adatabase system:

wscheman Q
Inventory

7
/

S/

deployed
artifact

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

97

Instance Level Deployment Diagram

deployment Book Club Web Application)

device
device adevices H i /
\"“'——P"
/57 serverr JTomeatl Sun SPARC Server
7]
el execution
wexecutionEnvironments enviranment edatabase system»
1T~
deployment
execution specification "-h--_.q_‘_‘_‘_‘_‘h et ascheman Q
anviranment wdeployment specs LLEE
P - web.xml «protocals
wartifacts D TCPAP
fff—p' book_club_app.war och Q
[~ o I
.
deployed e ™ wmanifests f r
artifact < T i
e communication
\ wCOm [:ﬂ:inv.alnltzuE path
O— O
OnlineOrders aschemas
RN cartifacts L) Inventory
d Epl-:‘:;.-e.’:/
artifact

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

Network Architecture Dia

device

«Firewalls
Cisco ASA 5585-X

57

communication
path

s1 @sz

«Fouters
Cisco 7613

device

wWeb servers

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

aSwitchs

«Email servers

«DMNS servers

grams

aFirewalls
Cisco ASA 5585-X

58

aSwitchs
Linksys SR2016

59

#Database sarvers ahpplication servers

99

Deployment diagram examples

See https://www.uml-diagrams.org/deployment-diagrams-examples.html

100

Software Engineering

Part 6 — The Unified Modeling Language
6.3 — diagrams we’ll use for the design phase

6.3.6 — Sequence diagrams

ICM — Computer Science Major — Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems — CPS2 engineering and development - Part 3: Software Engineering

Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Sequence diagrams

Sequence diagram is the most common kind of interaction diagram, which focuses on the message
interchange between a number of lifelines.

Types of nodes
* lifeline,
* execution specification,

* message,
* combined fragment,

* interaction use,

* state invariant,

* continuation,

* destruction occurrence.

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

Sequence diagrams

sd submit_commenls)

duration _

lifeline wuserviet»
:DWRServiet
-window «javascript»
' :Comments
gate | I
. object creation
validate()
— message
synchronous / validate() I |
message - — B coraaies o |
_____ =
:Proxy
gng:#g:mn P~ occurrence |
P ’ specification «ajax» |
=
return — wajax»
I i i /1
message
T asynchronous
/——P | message
gate I
< — — — — —
i «callback» errors
|
L

constraint

-

interaction use

Handle Errors

destruction
occurrence
specification

uml-diagrams.org

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

103

Lifeline

data:Stock

:User

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

x[k]:X

104

Execution

start
occurrence

finish ___|

:Service

occurrence

:Web
Client

:Task

start .

search

run

:Service

:Task

J1

start

callback

105

Calls

‘Web :Online
Client Bookshop
search
Synchronous

Web Client searches Online Bookshop and waits for results.

:Service

:Task

start

Asynchronous

Service starts Task and proceeds in parallel without waiting.

i

106

Messages

:Online
Bookshop

-->

Create

:Account

:Web
Client

Lost

search

:Online
Bookshop

:Account

«destroy»

Delete

:Web
Client

:Online
Bookshop

:Online
Bookshop

search

Found

Reply

search

107

Combined fragment with interaction

operator

Interaction operator could be one of:

alt - alternatives

opt - option
loop - iteration

break - break
par - parallel

alt [balance>0] !

reject() |

—_—

* strict - strict sequencing

* seq - weak sequencing
* critical - critical region

par)
search_google()

search_ask()

ignore - ignore
consider - consider
assert - assertion

neg - negative

) T]

search_google() |

search_bing()
Ir

search_yahoo()
Ir
!

™ |
opt) [no errors] | loop) |
post_comments() notify() |
| =it
- N !oop{w)) |
notify() |
| I
assert) | u| |
commit)) | u |oop(5,1oy (size<0) |
notify() |
{t==com|:||lele}
|
™ |

weq J |

search_google() ‘

search_bing()
1

search_yahoo()
Il

I L
- T T

Ioop(ﬂ)u |

add() :

breawpﬂ] |

save()
1

Sequence diagram examples

See https://www.uml-diagrams.org/sequence-diagrams-examples.html

109

Software Engineering

Syllabus and Course Organization

ICM — Computer Science Major — Course unit on Software Engineering
M1 Cyber Physical and Social Systems — Course unit on System Modeling
Maxime Lefrangois https://maxime.lefrancois.info

Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng

What are the Benefits and Steps in a System Development Life Cycle?

The development process begins when a need is referred to the Information Services help desk.
This affows adequate planning and prioritization with other refated or independent activities.

Typical Service Desk Requests

[P —

visughrandationy g peeoms)
Tt Lol T L L L - " .
Testing for suitability and success TTIL® s the most widely acceptad o T senvice
e i be-gnar Y - ; msnacement in the workd TiL 2 cohesve set of best
nt B Sy sy e 13 practice, drawn from the nﬂ'ﬂ\dm sectors intemationally.
W It

We support understanding and business change.

Course objectives

The objective is to know some core concepts, processes, and models, that are useful to comprehend common
issues and problems in the engineering of IT systems that result from the integration of existing systems
(systems of systems), operate in distributed environments Web, 10T, Cloud, ...

Topics:
* Software Engineering Introduction * Software Engineering process
* Motivations and Definitions * Software development life cycles
* Software Requirements * Agile methodologies
* Definitions * The Scrum methodology
* Elicitation, analysis, specification, validation * DevOps methodologies
* Software Quality * Software Engineering Models
* TheISO/IEC 25010:2011 System and software * The Unified Modeling Language

guality models

Positioning wrt Teaching Module

M1 CPS2 students ICM students
Teaching Module on CPS2 engineering and development Teaching Module on CPS2 software engineering
1. Everything from the command line (ECL: weight 18) 1. Introduction to Software Engineering
2. Technological foundations of software development 2. Software development best practices
(TFSD: weight 20) 3. Software architectures

3. Software Engineering (Softeng: weight 12)

Course organization

See https://ci.mines-stetienne.fr/cps2/course/softeng

Grading policy for this part

Behavior (B, -2 to +2)
Written Exam (WE, O to 20)
Grade=WE +B

