
Software Engineering

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Engineering

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Part 1 – Introduction

3

Objectives of this course

The aim of this session is for you to learn about Software Engineering

Software engineering is the systematic application of engineering approaches to the
development of software.
A software engineer is a person who applies the principles of software engineering to design,
develop, maintain, test, and evaluate computer software. The term programmer is sometimes
used as a synonym, but may also lack connotations of engineering education or skills.

— Wikipedia contributors - https://en.wikipedia.org/wiki/Software_engineering

4

60s-80s – The Software Crisis

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become an
equally gigantic problem.

— Edsger Dijkstra, The Humble Programmer (EWD340), 1972 Turing Award Lecture

5

Fun story

source: http://catless.ncl.ac.uk/Risks/19.33.html%23subj1

6

Not fun story: Therac-25

https://catless.ncl.ac.uk/Risks/3.09.html
https://en.wikipedia.org/wiki/History_of_software_engineering#1965_to_1985:_The_software_crisis

7

Fun bugs

https://catless.ncl.ac.uk/Risks/3.44.html

8

Many more stories: RISKS Digest
Forum on Risks to the Public in Computers and Related Systems

ACM Committee on Computers and Public Policy, Peter G. Neumann, moderator
http://catless.ncl.ac.uk/Risks/

Examples of Volume 1, 1985
Legend: ! = Loss of Life; * = Potentially Life-Critical; $ = Loss of Money/Equipment; S = Security/Privacy/Integrity Flaw

!S Arthritis-therapy microwaves set pacemaker to 214, killed patient (SEN 5 1)
*$ Mariner 18: aborted due to missing NOT in program (SEN 5 2)
*$ F18: plane crashed due to missing exception condition, pilot OK (SEN 6 2)
*$ El Dorado brake computer bug caused recall of all El Dorados (SEN 4 4)
* Second Space Shuttle operational simulation: tight loop upon cancellation of an attempted abort; required manual override (SEN 7 1)
* Gemini V 100mi landing err, prog ignored orbital motion around sun (SEN 9 1)
* F16 simulation: plane flipped over whenever it crossed equator (SEN 5 2)
* F16 simulation: upside-down F16 deadlock over left vs. right roll (SEN 9 5)
* SF BART train doors sometimes open on long legs between stations (SEN 8 5)
* IRS reprogramming cost USA interest on at least 1,150,000 refunds (SEN 10 3)
 Santa Clara prison data system (inmate altered release date) (SEN 10 1).
 Computerized time-bomb inserted by programmer (for extortion?) (10 3)
*$ Colorado River flooding in 1983, due to faulty weather data and/or faulty model; too much water was kept dammed prior to spring thaws.
$ 1979 AT&T program bug downed phone service to Greece for months (SEN 10 3)
 Quebec election prediction gave loser big win [1981] (SEN 10 2, p. 25-26)
 SW vendor rigs elections? (David Burnham, NY Times front page, 29 July 1985)
 Vancouver Stock Index lost 574 points over 22 months -- roundoff (SEN 9 1)

9

Productivity and quality issues in software ...
Due to:
 increase in size and complexity of systems
 shorter and shorter deadlines
 bigger and bigger teams, with multiple skills

Causing:
 Cost and Budget Overruns
 Property Damage
 Life and Death

10

Productivity and quality issues in software ...
Due to:
 increase in size and complexity of systems
 shorter and shorter deadlines
 bigger and bigger teams, with multiple skills

… called for the development of Software
Engineering

Software engineering is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of
engineering to software)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

Causing:
 Cost and Budget Overruns
 Property Damage
 Life and Death

11

Describes 15 Knowledge Areas (KAs)
in the field of software engineering

• Software Requirements
• Software Design
• Software Construction
• Software Testing
• Software Maintenance
• Software Configuration Management
• Software Engineering Management
• Software Engineering Process
• Software Engineering Models and Methods
• Software Quality
• Software Engineering Professional Practice
• Software Engineering Economics
• Computing Foundations
• Mathematical Foundations
• Engineering Foundations

SWEBOK: Software Engineering Body of
Knowledge ISO/IEC TR 19759:2015 (v1 in 2005)

get your version here: https://www.computer.org/education/bodies-of-knowledge/software-engineering

Software Engineering
Part 2 – Software Requirements

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/softeng/

source: https://www.zentao.pm/agile-knowledge-share/tree-swing-project-management-cartoon-97.mhtml

13

Software Requirement - definition

verifiable
• if possible: quantifiable
• verification at the individual level, or at the system level
• verification may be difficult or costly

may be prioritized (enables tradeoffs)

may have status values (enables project progress monitoring)

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

14

Software Requirement - definition

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

1. software capability needed by a user to solve a problem or to achieve an objective
2. software capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document

15

Product and Process requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

product requirement
refinement of customer requirements into the developers' language, making implicit
requirements into explicit derived requirements

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

process requirement
constraint on the development of the software

example of product requirement: “The software shall verify that a student meets all prerequisites before he or she registers for a course”
example of process requirement: “The software shall be developed using a Agile process”

process requirements can be imposed by the dev organization,
the customer, a third party such as safety regulator

16

Functional and Nonfunctional
requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, …
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

17

Functional and Nonfunctional
requirements

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)
— IEEE 730-2014 IEEE Standard for Software Quality Assurance Processes, 3.2

functional requirement
1. statement that identifies what results a product or process shall produce
2. requirement that specifies a function that a system or system component shall perform

— ISO/IEC/IEEE 24765:2017 Systems and Software Engineering Vocabulary (SEVOCAB)

nonfunctional requirement
1. software requirement that describes not what the software will do but how the software will do it

example of functional requirement: Business Rules, Transaction corrections, adjustments, and cancellations, …
example of nonfunctional requirement: “The interface shall be user-friendly / the authentification must be secure / streaming must be lightning fast”

see also blog post on functional vs nonfunctional requirements https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/

further classification of nonfunctional requirements:
performance, maintainability, safety, reliability, security, interoperability, …

18

Requirements process
includes i. elicitation, ii. analysis, iii.
specification, and iv. validation.

is initiated at the beginning of a project, and
refined throughout the life cycle of the project

requirements are configuration items. They can
be managed during the life cycle of the project

Software projects are critically vulnerable when the
requirements related activities are poorly performed.

Incremental and iterative requirements engineering process.
Source: Jin, Zhi. Environment modeling-based requirements engineering for software intensive systems .
Morgan Kaufmann, 2018. Chapter 1 - Requirements and Requirements Engineering

19

Requirements process – actors
users
will operate the software. Heterogenous goup involving people with different roles

customers
those who commissioned the software or who represent the target market

market analyst
for mass-market software, marketing people act as proxy customers

regulators
impose requirements of the regulatory authorities (ex, banking, public transport, utilitie)

software engineers
legitimate interest in optimizing the actual development time and costs

tradeoffs need to be negotiated
see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

20

Requirements process – i. elicitation

Sources
• goals of the software
• domain knowledge
• stakeholders
• business rules
• operational environment
• organizational environment

Elicitation techniques
• interviews
• scenarios
• prototypes
• facilitated meetings
• observation
• user stories https://en.wikipedia.org/wiki/User_story

• …

“As a <role>, I want <goal/desire> so that <benefit>.”

21

Requirements process – ii. analysis

Classify the requirements
• functional/nonfunctional
• source (e.g., user, regulation)

• on the product or the process
• priority (mandatory, highly desirable, desirable, optional)

• scope (global, narrow)

• Volatility/stability

22

Requirements process – ii. analysis

exemple: UML Use case diagrams
source: https://www.uml-diagrams.org/use-case-diagrams.html

Conceptual models
For example with the Unified Modeling Language (UML)

• use case diagrams

• communication diagrams

• state machine diagrams

• …

23

Requirements process – ii. analysis

exemple: UML Communication diagrams
source: https://www.uml-diagrams.org/communication-diagrams.html

Conceptual models
For example with the Unified Modeling Language (UML)

• use case diagrams

• communication diagrams

• state machine diagrams

• …

24

Requirements process – ii. analysis

exemple: UML state machine diagrams
source: https://www.uml-diagrams.org/protocol-state-machine-diagrams.html

Conceptual models
For example with the Unified Modeling Language (UML)

• use case diagrams

• communication diagrams

• state machine diagrams

• …

25

Requirements process – ii. analysis
Architectural Design
“point when the requirement process overlaps with the software/system design”

Requirement allocation
Requirements need to be allocated to the architecture/design component that will be
responsible for satisfying the requirement

Demonstrates that the requirement process is not only an upfront analysis task !

26

Requirements process – ii. analysis

Conflicts may arise …
• stakeholders require incompatible features
• incompatibilities between requirements and resources
• incompatibilities between functional and nonfunctional requirements
• …

Negotiation is important
• consult with the stakeholders instead of making unilateral decisions
• refine priorization
• estimate wisely cost and time
• keep traces the decisions

see for example https://www.bbau.ac.in/dept/dit/TM/Requirement%20Validation.pdf

27

Requirements process – ii. analysis

formal analysis

“application of mathematically rigorous techniques for the specification, development,

and verification of software and hardware systems”

 costly
 important for safety-critical or security-critical software/systems
 permits static validation (for example, absence of deadlocks)

Methods
logic calculi, formal languages, automata theory, discrete event dynamic system, program

semantics, type systems, algebraic datatypes

see for example https://en.wikipedia.org/wiki/Formal_methods

– What is formal method - https://shemesh.larc.nasa.gov/fm/fm-what.html

28

Requirements process – iii.
specification

specification (in software engineering)

“production of a document that can be systematically reviewed,

evaluated, and approved”

software requirements specification (SRS)

“structured collection of the essential requirements [functions,

performance, design constraints and attributes] of the software

and its external interfaces”

see also https://en.wikipedia.org/wiki/Software_requirements_specification

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

example organization of a SRS document
source: https://en.wikipedia.org/wiki/Software_requirements_specification

— IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation

29

Requirements process – iv. validation

see for example https://en.wikipedia.org/wiki/Formal_methods

requirement validation
“confirmation by examination that requirements (individually and as a set) define the right
system as intended by the stakeholders”

Techniques for requirement validation
• reviews
• inspections
• prototyping
• user manual development
• model validation
• requirements testing

– ISO/IEC/IEEE 29148:2011 Systems and software engineering — Life cycle processes — Requirements engineering

30

Software requirements tools

Detailed list here (see column « RM »)
https://en.wikipedia.org/wiki/List_of_requirements_engineering_tools

almost exclusively commercial tools

https://www.jamasoftware.com/solutions/software-development/

https://visuresolutions.com/

https://www.innoslate.com/requirements-management/

31
Breakdown of Topics for the Software Requirements KA. Source: SWEBOK V3

Software Engineering
Part 3 – The ISO/IEC 25010 System and software quality models

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

33

Software quality model (ISO/IEC
25010:2011)

software quality
degree to which a software product satisfies stated and implied needs when used under specified conditions

— ISO/IEC 25010:2011 System and software quality models

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

34

Quality model for AI systems (ISO/IEC
25059:2024) https://iso25000.com/index.php/en/iso-25000-standards/iso-25059

35

Software quality model (ISO/IEC
25010:2023)

software quality
degree to which the system satisfies the stated and implied needs of its various stakeholders, and thus provides value.

— ISO/IEC 25010:2011 System and software quality models

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

NEW!

NEW!

NEW!

MODIFIED

36

Evaluation process (ISO/IEC
25040:2011)

Five activities, each having different steps

https://iso25000.com/index.php/en/iso-25000-standards/iso-25040

Software Engineering
Part 4 – Software Engineering Process

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

2

Software engineering methods –
definition

software engineering method
organized and systematic approach to developing software for a target computer

objectives:
• facilitate human understanding, communication, and coordination
• aid management of software projects
• measure and improve the quality of software products in an efficient manner
• support process improvement
• provide a basis for automated support of process execution

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

3

Software development life cycles (SDLC)

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

software development life cycle process
software processes used to specify and
transform software requirements into a
deliverable software product

source https://en.wikipedia.org/wiki/Software_development_process

history

4

Example of a software development life cycle

Analysis vs. Design
What vs. How

During Analysis

• To know about the application domain and
the requirements

• Development of a coarse-grained model to
show where responsibilities are, and how
objects interact

• Models show a message being passed, but no
worry too much about the contents of each
message

During Design

• To know how the software should work

• Development of fine-grained models to show
exactly what will happen when the system
runs

6

The waterfall development life cycle
model

Many variants of this model
 Well-documented and well structured
 Easy to maintain
 No prototype, late feedback to customer
 Major project risks, e.g. Implementation technology, are faced at the end of the project

 W.W. Royce, 1970

→ product requirements document

→ models, schemas, business rules

→ software architecture

→ systematic discovery and debugging of defects

→ installation, migration, support, maintenance

→ development, unit tests, software integration

7

The V-model life cycle model

source: https://www.tutorialscampus.com/sdlc/v-model.htm

1980s

8

Many more SDLC models ...

source: https://www.tutorialscampus.com/sdlc/

iterative SDLC model

spiral SDLC model

incremental SDLC model

9

Simplest SDLC models ...

source: https://www.tutorialscampus.com/sdlc/

Big Bang methodology Chaos model

One main rule:
always resolve the most important issue first

10

Agile methods (not a SDLC model!)

source: https://www.tutorialscampus.com/sdlc/agile-model.htm

1990s

Many Agile SDLC models
Lightweight methods; short, iterative development cycles; self-organizing teams; simpler designs; code refactoring; test-
driven development; frequent customer involvement; create demonstrable working product with each development cycle

11
source: https://agilemanifesto.org/

4 values

2001

12
source: https://agilemanifesto.org/

We follow these 12 principles:

 Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

 Welcome changing requirements, even late in development. Agile processes harness change for the customer's
competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter
timescale.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the
job done.

 The most efficient and effective method of conveying information to and within a development team is face-to-face
conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

4 values
and

12 principles

2001

Agile vs « traditional » methods

Agile development methods

• Dynamic System Development Methodology and RAD
(www.dsdm.org, 1995)

• Scrum (Sutherland and Schwaber, 1995)
• XP - eXtreme Programming (Beck, 1999)
• Feature Driven Development (DeLuca, 1999)
• Adaptive Sw Development (Highsmith, 2000)
• Lean Development (Poppendieck, 2003)
• Crystal Clear (Cockburn, 2004)
• Agile Unified Process (Ambler, 2005)
• DevOps (

15

Extreme Programming (XP)

source: http://www.extremeprogramming.org

The values of
XP

simplicity
communication

feedback
respect
courage

Manage Goals Instead of Activities

16

Scrum - Framework

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

A Scrum Master fosters an environment where
1. A Product Owner orders the work for a complex problem into a Product Backlog.
2. The Scrum Team turns a selection of the work into an Increment of value during a Sprint.
3. The Scrum Team and its stakeholders inspect the results and adjust for the next Sprint.
4. Repeat

17

DevOps
DevOps is a set of practices that combines software development (Dev) and IT operations (Ops). It
aims to shorten the systems development life cycle and provide continuous delivery with high
software quality. DevOps is complementary with Agile software development; several DevOps
aspects came from the Agile methodology. — Contributors, Wikipedia https://en.wikipedia.org/wiki/DevOps

There are many variants

18
https://s32860.pcdn.co/wp-content/uploads/2019/11/devops-hero-1-87966cfbc9c5713ae047551c7b22985c.png

19

Agile vs DevOps

Source: https://www.guru99.com/agile-vs-devops.html

• DevOps is a practice of bringing development and operations teams together whereas Agile is an iterative approach that focuses on
collaboration, customer feedback and small rapid releases.

• DevOps focuses on constant testing and delivery while the Agile process focuses on constant changes.
• DevOps requires relatively a large team while Agile requires a small team.
• DevOps leverages both shifts left and right principles, on the other hand, Agile leverage shift-left principle.
• The target area of Agile is Software development whereas the Target area of DevOps is to give end-to-end business solutions and fast delivery.
• DevOps focuses more on operational and business readiness whereas Agile focuses on functional and non-function readiness.

Software Engineering
Part 5 – Focus on the Scrum methodology

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

21

Scrum - roles
The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

Developers are the people in the Scrum Team that are committed to creating any aspect of a

usable Increment each Sprint.

• Create a plan for the Sprint, the Sprint Backlog;
• Instill quality by adhering to a Definition of Done;
• Adapt their plan each day toward the Sprint Goal; and,
• Hold each other accountable as professionals.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

22

Scrum - roles
The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

Product Owner is accountable for maximizing the value of the product resulting from the

work of the Scrum Team. How this is done may vary widely across organizations, Scrum

Teams, and individuals.

• Develop and explicitly communicate the Product Goal;
• Create and clearly communicate Product Backlog items;
• Order Product Backlog items; and,
• Ensure that the Product Backlog is transparent, visible and understood.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

23

Scrum - roles
The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

Scrum Master is accountable for establishing Scrum as defined in the Scrum Guide. They do

this by helping everyone understand Scrum theory and practice, both within the Scrum Team

and the organization.

The Scrum Master is accountable for the Scrum Team’s effectiveness. They do this by enabling

the Scrum Team to improve its practices, within the Scrum framework.

Scrum Masters are true leaders who serve the Scrum Team and the larger organization.

Serves the Scrum Team:
• Coaching the team members in self-management and cross-functionality;
• Helping the Scrum Team focus on creating high-value Increments that meet the Definition

of Done;
• Causing the removal of impediments to the Scrum Team’s progress; and,
• Ensuring that all Scrum events take place and are positive, productive, and kept within the

timebox.
https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

24

Scrum - roles
The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

Scrum Master is accountable for establishing Scrum as defined in the Scrum Guide. They do

this by helping everyone understand Scrum theory and practice, both within the Scrum Team

and the organization.

The Scrum Master is accountable for the Scrum Team’s effectiveness. They do this by enabling

the Scrum Team to improve its practices, within the Scrum framework.

Scrum Masters are true leaders who serve the Scrum Team and the larger organization.

Serves the Product Owner:
• Helping find techniques for effective Product Goal definition and Product Backlog

management;
• Helping the Scrum Team understand the need for clear and concise Product Backlog items;
• Helping establish empirical product planning for a complex environment; and,
• Facilitating stakeholder collaboration as requested or needed.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

25

Scrum - roles
The Scrum Team consists of one Scrum Master, one Product Owner, and Developers

Scrum Master is accountable for establishing Scrum as defined in the Scrum Guide. They do

this by helping everyone understand Scrum theory and practice, both within the Scrum Team

and the organization.

The Scrum Master is accountable for the Scrum Team’s effectiveness. They do this by enabling

the Scrum Team to improve its practices, within the Scrum framework.

Scrum Masters are true leaders who serve the Scrum Team and the larger organization.

Serves the Organization:
• Leading, training, and coaching the organization in its Scrum adoption;
• Planning and advising Scrum implementations within the organization;
• Helping employees and stakeholders understand and enact an empirical approach for

complex work; and,
• Removing barriers between stakeholders and Scrum Teams

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

26https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Scrum - Framework
A Scrum Master fosters an environment where
1. A Product Owner orders the work for a complex problem into a Product Backlog.
2. The Scrum Team turns a selection of the work into an Increment of value during a Sprint.
3. The Scrum Team and its stakeholders inspect the results and adjust for the next Sprint.
4. Repeat

27

Scrum – product backlog
The Product Backlog is an emergent, ordered list of what is needed to improve the product.

It is the single source of work undertaken by the Scrum Team.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Example Product Backlog
Source: https://www.scrum-institute.org/The_Scrum_Product_Backlog.php

28

Scrum – sprint planning
Sprint Planning initiates the Sprint by laying out the work to be performed for the Sprint. This

resulting plan is created by the collaborative work of the entire Scrum Team.

Topic One: Why is this Sprint valuable?
Product Owner proposes how to increase the value and utility of the product

Scrum Team collaborates to define Sprint Goal

Topic Two: What can be Done this Sprint?
Developers discuss with Product Owner and select items from the Product Backlog to include in the current Sprint

Refine items, estimate how much can be done in the Sprint timebox

Topic Three: How will the chosen work get done?
Developers plan the work. Decompose Product Backlog into smaller work items

Output: Sprint Backlog: Sprint Goal, Product Backlog selected for the Sprint, Plan for delivering them

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

29

Scrum – sprint backlog
The Sprint Backlog is composed of the Sprint Goal (why), the set of Product Backlog items

selected for the Sprint (what), as well as an actionable plan for delivering the Increment (how)

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Example Sprint Backlog
Source: https://www.scrum.org/resources/what-is-a-sprint-backlog

30

Scrum – daily scrum
For developers only - The purpose of the Daily Scrum is to inspect progress toward the Sprint

Goal and adapt the Sprint Backlog as necessary, adjusting the upcoming planned work.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Example Sprint Backlog
Source: https://www.scrum.org/resources/what-is-a-sprint-backlog

31

Scrum – sprint review
inspect the outcome of the Sprint and determine future adaptations. The Scrum Team presents

the results of their work to key stakeholders and progress toward the Product Goal is discussed.

During the event, the Scrum Team and stakeholders review what was accomplished in the Sprint

and what has changed in their environment. Based on this information, attendees collaborate on

what to do next. The Product Backlog may also be adjusted to meet new opportunities. The

Sprint Review is a working session and the Scrum Team should avoid limiting it to a presentation.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html https://startinfinity.com/product-management-framework/scrum-sprint/sprint-review-vs-sprint-retrospective

32

Scrum – Increment and Done
An Increment is a concrete stepping stone toward the Product Goal. Each Increment is additive to

all prior Increments and thoroughly verified, ensuring that all Increments work together. In order

to provide value, the Increment must be usable.

The Definition of Done is a formal description of the state of the Increment when it meets the

quality measures required for the product

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html source: https://youtu.be/0MTWysPmaoU

33

Scrum – Sprint retrospective
The purpose of the Sprint Retrospective is to plan ways to increase quality and effectiveness.

The Scrum Team inspects how the last Sprint went with regards to individuals, interactions,

processes, tools, and their Definition of Done.

The Scrum Team identifies the most helpful changes to improve its effectiveness.

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

34

Scrum - values

https://www.scrum.org/ (with videos, guide)
https://www.scrumguides.org/index.html

Software Engineering
Part 6 – The Unified Modeling Language

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

Software Engineering
Part 6 – The Unified Modeling Language

6.1 Introduction

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

3

Software Development Methods

4

Software Development Methods
• processes that distinguish development stages in the software life cycle.

Should:
• be modular, reduce complexity, reuseable, at the right level of abstraction

• Using a representation formalism that facilitates communication,
organization and verification

• Production of a set of artifacts that facilitate design feedback and
application evolution

• documents, models, prototypes

5

Existing software Development
Methods
• Hierarchical functional methods

• Data-Flow/SADT/SA-SD, Structure-Chart, ...

• Data oriented methods
• Entité-Relation, MERISE, ...

• Behaviour oriented methods
• SA-RT, Petri Net, ...

• Object oriented methods
• OMT, OOA, Classe-Relation, OOD, ...

6

Object-oriented SD methods
• Statement:

• at the beginning of the 90’s, there are about 50 object oriented methods,
• linked only by a consensus around common ideas (object, class, subsystems, ...)
• BUT each with its own notation,
• WITHOUT being able to fulfill all the needs and to correctly model the various fields of application.

• Definition of a single common language
• usable by any object method,
• in all phases of the life cycle,
• compatible with current production techniques.

 UML

• Definition a common unified development process
 Unified Process (obsolete, use Scrum or other more recent processes)

UML (Unified Modeling Language)
• Based on:

• OMT notations (J. Rumbaugh) for the analysis and design of data-based
information systems

• G. Booch’s method notations for the design and implementation phases
• OOSE notations (I. Jacobson) for requirement analysis through "use cases".

• Proposes:
• Standardized development artifacts (models, notation, diagrams) WITHOUT

standardizing the development process,

• Important role played by RATIONAL and OMG (http://www.omg.org/)

Booch method OMT
(Rumbaugh)

Unified Method 0.8OOPSLA 1995

OOSE
(Jacobson)

Other methods

UML 0.9Web - June 1996

UML 1.1
1st submission à OMG, Jan 1997

Approval OMG, Nov 1997

UML 1.0UML partners

UML : Evolution

Revision Task Force, Jul 2005 UML 2.0

UML 2.5.1Latest version

Meyer

Before and after
 conditions

Harel

Statecharts
Gamma, et al

Frameworks and patterns

HP Fusion

Operation descriptions and
message numbering

Embley

Singleton classes and
high-level view

Wirfs-Brock

Responsibilities

Odell

Classification

Shlaer - Mellor

Object lifecycles

Rumbaugh

OMT

Booch

Booch method

Jacobson

OOSE

Contributions to UML 1.X

UML Meta-Model

Based on Martin Fowler UML Distilled and Viviane Jonckers OOSD-UML course

UML Vocabulary

Basic components
Relations

DiagramsStruct.

Comp.

Group.

Annot.

Use cases
Classes
Active classes
Interface
Component
Collaboration
Node

Interaction
State machine

Package
Model
Sub-system
Framework

note
Dependences
Associations
Generalisation

+ extention mechanisms

UML Diagrams

Possibility of representing the same diagram at different levels of detailUML Specification, v2.5.1, p727 https://www.omg.org/spec/UML/2.5.1/PDF

Views on the Software

Performance
Scalability

System integrators
System topology

Installation
Communication

System engineer

Conceptuel Physique

Use
cases

Programmers
Software

management

Designers

Problem domain

Implementation view

Process view Deployment view

Design view

Diagrams within Views on the Software

Designers

Problem domain

Implementation view

Programmers
Software

management

Process view

Performance
Scalability

System integrators

Deployment view

System topology
Installation

Communication

System engineer

Conceptual Physical

Use case view

Classes, Objects, Composite Structure
Communication, Sequences

Interaction, Activity

Components, Composite Structure
Interaction, Statechart

Component, Deployment
Interaction

Use Cases
Interaction

Design view

Rules of thumb

• Nearly everything in UML is optional

• UML provides a language to capture information that varies
greatly depending on the domain of the problem.

• Parts of UML either don't apply to your particular problem or may
not lend anything to the particular view you are trying to convey.

• You don't need to use every part of UML in every model you
create.

• You don't need to use every allowable symbol for a diagram type
in every diagram you create.

• Show only what helps clarify the message you are trying to

Pointers
• The UML Specification https://www.omg.org/spec/UML/About-UML/
• https://www.uml-diagrams.org/

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.1 – Use case diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

18

Use case diagrams
Describes a set of actions (use cases) that some system or systems
(subject) should or can perform in collaboration with one or more
external users of the system (actors) to provide some observable and
valuable results to the actors or other stakeholders of the system(s).

terminology: use case, actor, subject, extend, include, association.

see also: https://www.uml-diagrams.org/use-case-reference.html

19

Business Use Case Diagrams

see also: https://www.uml-diagrams.org/use-case-reference.html

20

System Use Case Diagrams

see also: https://www.uml-diagrams.org/use-case-reference.html

21

Actors and use cases
Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the
subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

Generalization between actors
see also: https://www.uml-diagrams.org/use-case-reference.html

22

Actors and use cases
Actor

An actor is behaviored classifier which specifies a role played by an external entity that interacts with the
subject (e.g., by exchanging signals and data), a human user of the designed system, some other system or
hardware using services of the subject.

Use case

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

see also: https://www.uml-diagrams.org/use-case-reference.html

23

Includes and Extends
Extends

Extend is a directed relationship that specifies how and when the behavior defined in usually supplementary
(optional) extending use case can be inserted into the behavior defined in the extended use case.

Includes

A use case is a kind of behaviored classifier that specifies a [complete] unit of [useful] functionality performed
by [one or more] subjects to which the use case applies in collaboration with one or more actors, and which
[for complete use cases] yields an observable result that is of some value to those actors [or other
stakeholders] of each subject.

see also: https://www.uml-diagrams.org/use-case-reference.html

24

Includes and Extends
Includes

Use case include is a directed relationship between two use cases which is used to show that behavior of
the included use case (the addition) is inserted into the behavior of the including (the base) use case.

The include relationship could be used:

• to simplify large use case by splitting it into several use cases,

• to extract common parts of the behaviors of two or more use cases.

see also: https://www.uml-diagrams.org/use-case-reference.html

25

Use Case Relationships Compared

Generalization Extend Include

Base use case could be
abstract use case (incomplete) or
concrete (complete).

Base use case is complete (concrete) by
itself, defined independently.

Base use case is incomplete (
abstract use case).

Specialized use case is required, not
optional, if base use case is abstract.

Extending use case is optional,
supplementary.

Included use case required, not
optional.

No explicit location to use
specialization.

Has at least one explicit extension
location.

No explicit inclusion location but is
included at some location.

No explicit condition to use
specialization.

Could have optional extension
condition.

No explicit inclusion condition.

see also: https://www.uml-diagrams.org/use-case-reference.html

26

Describe Use Case Behaviors
Use case behaviors may be described in a natural language text
(opaque behavior), which is current common practice, or by using
UML behavior diagrams for specific behaviors such as

• activity,

• state machine,

• interaction.

link between a use case and an activity

description using a state machine diagram

Activity diagram: description of the Purchase Ticket activitysee also: https://www.uml-diagrams.org/use-case-reference.html

27

Use Case diagrams examples
See https://www.uml-diagrams.org/use-case-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.2 – Activity diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

29

Activity diagrams
Activity diagram is UML behavior diagram which shows flow of
control or object flow with emphasis on the sequence and conditions of
the flow. The actions coordinated by activity models can be initiated
because other actions finish executing, because objects and data
become available, or because some events external to the flow occur.

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

30

Activity diagrams

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

With swimlanes

Rendered with the frame notation for diagrams: keyword act

With parameters

31

Types of actions
Action is a named element which represents a single atomic step within activity, i.e. that is not further
decomposed within the activity. Activity represents a behavior that is composed of individual elements that are
actions.
• Object actions include different actions on objects, e.g. create and destroy object, test object identity, specify value, etc.
• Variable actions include variable read, write, add, remove and clear actions.
• Invocation actions include several call actions, signal send and broadcast actions and send object action.
• Send signal action
• Accept signal action
• Wait time action
• ...

Actions

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-actions.html

32

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
• initial node
• flow final node
• activity final node
• decision node
• merge node
• fork node
• join node

Controls

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

33

Types of controls
Control node is an activity node used to coordinate the flows between other nodes. It includes:
• initial node
• flow final node
• activity final node
• decision node
• merge node
• fork node
• join node

Controls

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-objects.html

34

Types of controls
Control node is an activity node:
• initial node
• flow final node
• activity final node
• decision node
• merge node
• fork node
• join node

Controls

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-controls.html

Decision node with decision input flow.Decision node with decision input behavior.Decision node with outgoing edges with guards

35

Objects flow in an activity

Objects

terminology: activity, partition, action, object, control, activity edge.

see also: https://www.uml-diagrams.org/activity-diagrams-controls.html

A data store is a central buffer node for non-transient information.input and output pins

36

Activity diagrams examples
See https://www.uml-diagrams.org/activity-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.3 – State machine diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

38

State machine diagrams
Used for modeling discrete behavior through finite state transitions. In
addition to expressing the behavior of a part of the system, state
machines can also be used to express the usage protocol of part of a
system. These two kinds of state machines are referred to as
behavioral state machines and protocol state machines.

terminology: behavioral state, behavioral transition, protocol state, protocol transition, different
pseudostates.

see also: https://www.uml-diagrams.org/activity-diagrams-reference.html

39

State machine diagrams

40

States

Simple state

List of internal activities

Composite state

Composite state with hidden decomposition

41

Pseudostates

initial/terminate(destroy)/final entry/exit choice fork/join

42

Protocol transition

protocol-transition ::= [pre-condition] trigger '/' [post-condition]
pre-condition ::= '[' constraint ']'
post-condition ::= '[' constraint ']'

A protocol transition is specialization of (behavioral) transition used for the protocol state machines which
specifies a legal transition for an operation. Protocol transition has the following features: a pre-condition
(guard), trigger, and a post-condition.

43

State Machine diagram examples
See https://www.uml-diagrams.org/state-machine-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.2 – diagrams we’ll use for the analysis phase

6.2.3 – Communication diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

45

Communication diagrams
Communication diagram (called collaboration diagram in UML 1.x) is a
kind of UML interaction diagram which shows interactions between
objects and/or parts (represented as lifelines) using sequenced
messages in a free-form arrangement.

terminology: frame, lifeline, message

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

46

Communication diagrams

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

47

Communication diagrams

in sequence in parallel guards

n times, in sequence n times in parallel

see also: https://www.uml-diagrams.org/communication-diagrams-reference.html

48

Communication diagram examples
See https://www.uml-diagrams.org/communication-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.1 – Class diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

50

Class diagrams
Class diagram is UML structure diagram which shows structure of the
designed system at the level of classes and interfaces, shows their
features, constraints and relationships - associations, generalizations,
dependencies, etc.

types of class diagrams are:
• domain model diagram,
• diagram of implementation classes.

see also: https://www.uml-diagrams.org/class-reference.html

51

Do
m

ai
n

m
od

el

di
ag

ra
m

s

see also: https://www.uml-diagrams.org/class-reference.html

52

D
ia

gr
am

 o
f

Im
pl

em
en

ta
tio

n
Cl

as
se

s

see also: https://www.uml-diagrams.org/class-reference.html

53

Class
Class

A class is a classifier which describes a set of objects that share the same:

• features,

• constraints,

• semantics (meaning).

Class SearchService - implementation level details.
The createEngine is static operation

Class SearchService - analysis level details
Class SearchService - attributes and operations grouped by visibility

see also: https://www.uml-diagrams.org/class-reference.html

54

Abstract, Nested, Template, Interface

Abstract class (italics) Class LinkedList is nesting
the Element interface. The
Element is in scope of the
LinkedList namespace.

Template class Array and
bound class Customers.
The Customers class is an
Array of 24 objects of
Customer class.

Abstract, Nested, Template, Interface

Interface realization

Interface usage

Various kinds of constraints or protocol
specifications (ordering restrictions)

An interface

see also: https://www.uml-diagrams.org/class-reference.html

55

Objects

Anonymous
instance of the
Customer class

Instance
newPatient of the
unnamed or
unknown class

Instance front-
facing-cam of the
Camera class
from
android.hardware
package.

Instance
orderPaid of the
Date class
has value July 31,
2011 3:00 pm.

Instance
newPatient of the
Patient class
has slots with
values specified.

see also: https://www.uml-diagrams.org/class-reference.html

56

Data Type, primitive type, enumeration
type

DateTime data type

Structured data type

Attributes of the Patient class are
of data types Name, Gender,
DateTime, Address and Visit.

Primitive data type.
Standard UML primitive
types include:
- Boolean,
- Integer,
- UnlimitedNatural,
- String.

 values are enumerated
in the model as user-
defined enumeration
literals

see also: https://www.uml-diagrams.org/class-reference.html

57

Operations

Operations with different visibilities
executeQuery is public, isPoolable is
protected, getQueryTimeout has
package visibility,
clearWarnings is private.

static operations are underlined
operations have a signature, with
parameters, and a return type.
File has two static operations - create
and slashify. Create has two parameters
and returns File. Slashify is private
operation. Operation listFiles returns
array of files. Operations getName and
listFiles either have no parameters or
parameters were suppressed.

Operation setDaemon has one input
parameter, while single parameter of
changeName is both input and output
parameter. Static enumerate returns
integer result while also having output
parameter - array of threads. Operation
isDaemon is shown with return type
parameter. It is presentation option
equivalent to returning operation result
as: +isDaemon(): Boolean.

see also: https://www.uml-diagrams.org/class-reference.html

58

Write constraints

Bank account attribute constraints -
non empty owner and positive balance.

Account owner is either Person or Corporation,
{xor} is predefined UML constraint.

Bank account constraints - non empty owner and
positive balance

see also: https://www.uml-diagrams.org/class-reference.html

59

Members and multiplicity

Multiplicity of players for SoccerTeam
class

Utility: class that has only class
scoped static attributes and operations.

see also: https://www.uml-diagrams.org/class-reference.html

60

Associations

Association Order of the ends and reading: Car - was designed in - Year Ternary association Design relating three classifiers.

Aggregation

Composite Aggregation (= composition)
If folder is deleted, all files are deleted as well

Aggregation/composition Ownership

Association end qb is an attribute of SearchService
class and is owned by the class.

A2 has unspecified navigability while B2 is navigable from A2.

A3 is not navigable from B3 while B3 has unspecified navigability.

Navigability

Association qualifier

Given a company and a social security number (SSN) at
most one employee could be found.

see also: https://www.uml-diagrams.org/class-reference.html

61

Generalization

Checking, Savings, and Credit Accounts are generalized by Account.

=

see also: https://www.uml-diagrams.org/class-reference.html

62

Interfaces

Interface SiteSearch is realized (implemented) by SearchService.Interface SiteSearch is used (required) by Search Controller.

see also: https://www.uml-diagrams.org/class-reference.html

63

Dependency

Data Access depends on Connection Pool

Search Controller uses Search Engine.

Data Source creates Connection

see also: https://www.uml-diagrams.org/class-reference.html

64

Class diagram examples
See https://www.uml-diagrams.org/class-diagrams-examples.html

Pointers
• The UML Specification https://www.omg.org/spec/UML/About-UML/
• https://www.uml-diagrams.org/

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.2 – Package diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

67

Package diagrams
Package diagram is UML structure diagram which shows structure of the designed
system at the level of packages.

Elements:

• package,

• packageable element,

• dependency,

• element import,

• package import,

• package merge.

see also: https://www.uml-diagrams.org/class-reference.html

68
see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package diagrams

69

Package
Package

A package is a namespace used to group together elements that are semantically related and might change
together. It is a general purpose mechanism to organize elements into groups to provide better structure for
system model.

Package org.hibernate Package org.hibernate contains SessionFactory and Session. Package org.hibernate contains interfaces
SessionFactory and Session.

All elements of Library Domain package are
public except for Account.

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

70

Import
Element Import

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Package Import

Public import of PageInfo element into Search namespace from Domain package.
Imported element are added to the namespace and made visible outside the namespace
.

Private import of SortInfo element into Search namespace from Domain package.
Imported element are added to the namespace but not visible outside the namespace
.

Public import:
All elements are added to the namespace and made visible outside the namespace

Private import:
All elements are added to the namespace but not visible outside the namespace

71

Package merge

Kernel package merges Constructs package which imports Primitive Types.
The contents of Constructs is combined with the one of Kernel

72
see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Model diagram

73

Model

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Different notations for Models

74

Package diagram examples
See https://www.uml-diagrams.org/package-diagrams-examples.html

Pointers
• The UML Specification https://www.omg.org/spec/UML/About-UML/
• https://www.uml-diagrams.org/

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.3 – Composite Structure diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

77

Composite Structure diagrams
Composite Structure Diagram could be used to show: internal structure of a
classifier - internal structure diagram, classifier interactions with environment
through ports, a behavior of a collaboration - collaboration use diagram.

Elements:

• class,

• part,

• port,

• connector,

• usage

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

78

Composite Structure diagrams

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

79

Structured classifier
Structured classifier

Structured classifier is classifier having internal structure and whose behavior can be fully or partially
described by the collaboration of owned or referenced instances.

Different notations for structured classifiers

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Simple ports joined directly by connector, mandatory UML notation.
Customers component part provides Account interface to Orders part.

80

Encapsulated Classifier

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

Encapsulated classifier is structured classifier extended with the ability to own ports.

Library Services is classifier encapsulated through Search Port Simple ports joined directly by connector, mandatory UML notation.
Customers component part provides Account interface to Orders part.

81

Part
represents a set of instances that are owned by a containing instance of a classifyer.

all parts are destroyed when the containing classifier instance is destroyed (composition)

Search Controller has 1 to 3 engines - Search Engine part Two Data Sources is sources property - but not part - of Search Controller

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

82

Port

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

83

Connectors

Assembly connector between ports of Authentication and Customers components.

Assembly connector between simple ports of Authentication and Customers components.

Assembly connector that assembles three parts.

see also: https://www.uml-diagrams.org/composite-structure-diagrams-reference.html

feature which specifies a link that enables communication between two or more instances playing
some roles within a structured classifier.

84

Composite structure diagram
examples
See https://www.uml-diagrams.org/composite-structure-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.4 – Component diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

86

Component diagrams
Component diagram shows components, provided and required interfaces, ports, and relationships
between them. This type of diagrams is used in Component-Based Development (CBD) to describe
systems with Service-Oriented Architecture (SOA).

Elements:

• component,

• provided interface,

• required interface,

• port,

• connectors.

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

87

Component diagrams

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

88

Components
Component

A component is a class representing a modular part of a system with encapsulated content and whose
manifestation is replaceable within its environment.

A component has its behavior defined in terms of provided interfaces and required interfaces (potentially
exposed via ports)

Different notations for components

see also: https://www.uml-diagrams.org/package-diagrams-reference.html

Old notation. For backward compatibility only

89

Interfaces

Weather Services component provides
(implements) Weather Forecast interface.

User Services component requires
IOrderServices interface.

90

Realization

Different notations for:
Component UserService realized by UserServlet and UserDAO..

91

Delegation

Delegation handled by a single port

Delegation connector from the delegating port to the UserServlet part.

Delegation connector from the simple port of Authentication
component to the delegating port.

92

Assembly

Assembly connector between ports of Authentication and Customers components.

Assembly connector between simple ports of Authentication and Customers components.

Assembly connector that assembles three parts.

93

Component diagram examples
See https://www.uml-diagrams.org/component-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.5 – Deployment diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

95

Deployment diagrams
Deployment Deployment diagram is a structure diagram which shows
architecture of the system as deployment (distribution) of software artifacts
to deployment targets.

Some common types of deployment diagrams are:
• Implementation (manifestation) of components by artifacts,
• Specification level deployment diagram,
• Instance level deployment diagram,
• Network architecture of the system.

see also: https://www.uml-diagrams.org/deployment-diagrams-reference.html

96

Manifestation of Components by
Artifacts

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

97

Specification Level Deployment
Diagram

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

98

Instance Level Deployment Diagram

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

99

Network Architecture Diagrams

see also: https://www.uml-diagrams.org/component-diagrams-reference.html

100

Deployment diagram examples
See https://www.uml-diagrams.org/deployment-diagrams-examples.html

Software Engineering
Part 6 – The Unified Modeling Language

6.3 – diagrams we’ll use for the design phase

6.3.6 – Sequence diagrams

ICM – Computer Science Major – Software Engineering - Part 1: Introduction
M1 Cyber Physical and Social Systems – CPS2 engineering and development - Part 3: Software Engineering
Guillaume Muller
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng/

102

Sequence diagrams
Sequence diagram is the most common kind of interaction diagram, which focuses on the message
 interchange between a number of lifelines.

Types of nodes

• lifeline,

• execution specification,

• message,

• combined fragment,

• interaction use,

• state invariant,

• continuation,

• destruction occurrence.

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

103

Sequence diagrams

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

104

Lifeline

see also: https://www.uml-diagrams.org/sequence-diagrams-reference.html

105

Execution

106

Calls

Synchronous
Web Client searches Online Bookshop and waits for results. Asynchronous

Service starts Task and proceeds in parallel without waiting.

107

Messages

Create Delete Reply

Lost Found

108

Combined fragment with interaction
operator
Interaction operator could be one of:
• alt - alternatives
• opt - option
• loop - iteration
• break - break
• par - parallel
• strict - strict sequencing
• seq - weak sequencing
• critical - critical region
• ignore - ignore
• consider - consider
• assert - assertion
• neg - negative

109

Sequence diagram examples
See https://www.uml-diagrams.org/sequence-diagrams-examples.html

Software Engineering

ICM – Computer Science Major – Course unit on Software Engineering
M1 Cyber Physical and Social Systems – Course unit on System Modeling
Maxime Lefrançois https://maxime.lefrancois.info
Course unit URL: https://ci.mines-stetienne.fr/cps2/course/softeng

Syllabus and Course Organization

2

3

Course objectives
The objective is to know some core concepts, processes, and models, that are useful to comprehend common
issues and problems in the engineering of IT systems that result from the integration of existing systems
(systems of systems), operate in distributed environments Web, IoT, Cloud, ...

Topics:

• Software Engineering Introduction
• Motivations and Definitions

• Software Requirements
• Definitions
• Elicitation, analysis, specification, validation

• Software Quality
• The ISO/IEC 25010:2011 System and software

quality models

• Software Engineering process
• Software development life cycles
• Agile methodologies
• The Scrum methodology
• DevOps methodologies

• Software Engineering Models
• The Unified Modeling Language

4

Positioning wrt Teaching Module
M1 CPS2 students ICM students

Teaching Module on CPS2 engineering and development
1. Everything from the command line (ECL: weight 18)
2. Technological foundations of software development

(TFSD: weight 20)
3. Software Engineering (Softeng: weight 12)

Teaching Module on CPS2 software engineering
1. Introduction to Software Engineering
2. Software development best practices
3. Software architectures

Course organization
See https://ci.mines-stetienne.fr/cps2/course/softeng

5

Grading policy for this part
Behavior (B, -2 to +2)
Written Exam (WE, 0 to 20)
Grade = WE + B

