
Technological foundations of
software development

Manage your source code

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

2

Objectives of the session

Ensure you are familiar with source code management methodologies
and tools, in particular the git software, the gitlab platform used at
school, and the github platform.

Technological foundations of
software development

Manage your source code
Part 1: generalities

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

4

Why track versions ?
Example: many versions of the same file

http://phdcomics.com/comics/archive.php?comicid=1531

5

Track changes in a file
Example with Word

6

Why save versions ?

http://library.ucmerced.edu/node/66631

Example: to restore to a previous state

7

For code ?
Some IDEs have embedded solutions
For example with Eclipse

https://mcuoneclipse.com/2013/04/03/restore-deleted-files-in-eclipse-with-local-history/

8

For code ?
Some IDEs have embedded solutions
For example with Eclipse

https://mcuoneclipse.com/2013/04/03/restore-deleted-files-in-eclipse-with-local-history/ https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Local version management

9

File synchronization software
Many solutions exist
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
- commercial or open-source
- local, or with server, or with cloud
- personal or collaborative folders

dropbox, 2007

ownCloud, 2010

dirsyncpro, 2004

rsync, 1996

10

Diff utilities

https://text-compare.com/ , online

https://en.wikipedia.org/wiki/Diff

linux diff, comp, comm, cli tools

Araxis merge, software

11

Diff utilities

In Eclipse

WinMerge

https://en.wikipedia.org/wiki/Diff
• syntax - semantics

12

Content comparison utilities

KDiff3, open-source

Jplag, freeware

codequiry, shareware

https://en.wikipedia.org/wiki/Content_similarity_detection
Example: plagiarism detection

13

VCS - Version Control System

Definition
A tool that helps developers/programmers
solve certain day-to-day problems, such as:
tracking code changes, helping with code
maintenance, and allowing them to work on
the same source code files without affecting
each other's workflow.

https://en.wikipedia.org/wiki/Version_control 14

VCS - Version Control System

Objectives
• Generate backups
• Test and experiment
• Keep history and track changes
• Collaborate and contribute remotely

https://en.wikipedia.org/wiki/Version_control

15

Concepts

• make a local copy of a remote repository
• make changes, commit changes ("submit")
• divergent branches containing version

sequences
• merge branches, with resolution of possible

conflicts
• tag versions
• propose revisions (PR, pull request)

https://en.wikipedia.org/wiki/Version_control 16

Centralized version management

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

Main limitation:
single point of failure

17

Distributed version management

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

(Bazaar)

18

History

https://initialcommit.com/blog/Technical-Guide-VCS-Internals https://askcodez.com/la-popularite-de-git-mercurial-bazar-vs-qui-a-recommander.html

19

SVN – Apache Subversion
Homepage http://subversion.apache.org/

SVN Book http://svnbook.red-bean.com/

Limitations
• centralized system

• no time stamping

• no history management, global version numbering

• network almost always necessary

• poorly managed "move" operation (delete + add)

• no normalization of file names https://docs.oracle.com/middleware/1221/core/MAVEN/config_svn.htm

https://en.wikipedia.org/wiki/Apache_Subversion

20

Git

developers initialy Linus Torvalds. Mainly Junio Hamano +1620

first version 2005

current version v2.41.0

license GPLv2 (free, open-source)

history
• Linux kernel contributions before 2002: patches transmitted and integrated by hand
• Linux kernel development 2002-2005: VCS distributed BitKeeper
• 2005: BitKeeper becomes payware, Linux Torvalds develops git with the following goals:

• speed ;
• simple design ;
• support for non-linear development (thousands of parallel branches) ;
• fully distributed ;
• ability to efficiently manage large projects such as the Linux kernel (speed and data compactness)

(which means "unpleasant person" in British English slang). : "I'm an egotistical bastard, and I name all my projects
after myself. First 'Linux', now 'git'." The man page describes Git as "the stupid content tracker".

https://en.wikipedia.org/wiki/Git
https://git-scm.com/book/fr/v2/D%C3%A9marrage-rapide-Une-rapide-histoire-de-Git

to update: https://github.com/git/git/graphs/contributors

to update: https://github.com/git/git/releases

Technological foundations of
software development

Manage your source code
Part 2 – Git basics

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

22

Philosophy
CVS, Subversion, Perforce, Bazaar, etc.

Save information as changes to files

How git works:
Stores data as snapshots of the project

over time

(snapshot flow)

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

23

Philosophy

Almost all operations are local
• remote repository ≈ local directory
• no need to constantly access the central server

Git manages integrity
• id of a repo state = checksum(previous id, changes)
• SHA-1 (40 hex characters, example 24b9da6552252987aa493b52f8696cd6d3b00373)
• git indexes the data by these checksum

Generally, Git only adds data
• almost impossible to lose permanently a repo state
• even undo actions are stored as a new change
• gives freedom to experiment safely

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F 24

How to use git - softwares

https://git-scm.com/downloads/guis

…

25

How to use git - CLI

26

How to use git - CLI

• Obtain help

• Obtain a concise version of the help

$ git help <commande>
$ git <commande> --help
$ man git-<commande>

$ git <commande> -h

https://git-scm.com/book/fr/v2/D%C3%A9marrage-rapide-Obtenir-de-l%E2%80%99aide

27

$ git init
Initialized empty Git repository in .

Initialize a Git repository in a directory
$ tree –a .
.
└── .git
 ├── HEAD
 ├── branches
 ├── config
 ├── description
 ├── hooks
 │ ├── applypatch-msg.sample
 │ ├── commit-msg.sample
 │ ├── fsmonitor-watchman.sample
 │ ├── post-update.sample
 │ ├── pre-applypatch.sample
 │ ├── pre-commit.sample
 │ ├── pre-merge-commit.sample
 │ ├── pre-push.sample
 │ ├── pre-rebase.sample
 │ ├── pre-receive.sample
 │ ├── prepare-commit-msg.sample
 │ └── update.sample
 ├── info
 │ └── exclude
 ├── objects
 │ ├── info
 │ └── pack
 └── refs
 ├── heads
 └── tag

$ git add *.html
$ git add README.md
$ git commit –m 'first version'

1

2

3

Option 1 to start a Git repository:

https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository

28

Clone an existing Git repository
Option 2 to start a Git repository:

$ git clone https://github.com/FFmpeg/FFmpeg
Cloning into 'FFmpeg'...
remote: Enumerating objects: 633677, done.
remote: Total 633677 (delta 0), reused 0 (delta 0), pack-reused 633677
Receiving objects: 100% (633677/633677), 263.28 MiB | 11.00 MiB/s, done.
Resolving deltas: 100% (498066/498066), done.
Updating files: 100% (7479/7479), done.

1

$ cd FFmpeg/
$ git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

2

https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository

29

Three file states: modified, indexed, validated.

modified: file modified but not validated in the DB
indexed: file marked to be part of the next snapshot
validated: data safely stored in the local database

https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F
https://screencasts.delicious-insights.com/courses/git-core-concepts/102205-default-section/305169-zones-and-file-lifecycle

30

Three repo areas:
working directory, index area, git directory

Where metadata,
project database,
compressed snapshots
are stored

copied when cloning
from a remote
repository

Working directory, index area and Git directory

a unique project
extraction

simple file that
stores what will be
in the next snapshot

https://git-scm.com/book/fr/v2/D%C3%A9marrage-rapide-Rudiments-de-Git

31

File states life cycle

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

trackednot tracked

Record changes to the repository

Index the file

Record the
indexed changes

32

Check the files state

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Record changes to the repository

$ git status
On branch master
Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

- no tracked files have been modified
- no untracked files
- master branch

$ echo "My project" > README.md
$ git status
On branch master

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 README.md

nothing added to commit but untracked files present (use "git
add" to track) - new untracked file detected

33

Index changed files

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

Record changes to the repository

$ nano index.html

- editing an existing file

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: README.md

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 modified: index.html

- README.md file tracked and indexed
- index.html file modified

34

Index changed files

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

$ git add index.html - Index index.html

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: README.md
 modified: index.html

- README.md tracked and indexed
- index.html file tracked and indexed

$ nano index.html - modified index.html

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: README.md
 modified: index.html
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 modified: index.html

?

Record changes to the repository

35

Index changed files

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

$ git add index.html

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: README.md
 modified: index.html

$ nano index.html

$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 new file: README.md
 modified: index.html
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working
directory)
 modified: index.html

- index.html file indexed
when running git add
- then modified

Record changes to the repository

- Index index.html

- README.md tracked and indexed
- index.html file tracked and indexed

- modified index.html

36

Commit changes

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

$ git commit –h
usage: git commit [<options>] [--] <pathspec>...

Commit message options
 -F, --file <file> read message from file
 --author <author> override author for commit
 --date <date> override date for commit
 -m, --message <message>
 commit message
 --status include status in commit message template
 ...

Commit contents options
 -a, --all commit all changed files
 -i, --include add specified files to index for commit
 --dry-run show what would be committed
 --short show status concisely
 --branch show branch information
 --amend amend previous commit
 ...

- git commit -a
skip the indexing step

Record changes to the repository

Technological foundations of
software development

Manage your source code
Part 3 – Branching and merging with Git

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

38

A commit and its tree

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

First commit of a repository with three files indexed, then validated
Calculated checksum: SHA-1

$ git init
$ git add README test.rb LICENSE
$ git commit -m 'initial commit of my project‘
$ git tree -a

Branches in a nutshell

39

Commits and their parents

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

New changes: each commit stores a pointer to the previous
commit(s)

Branch = pointer to the last commit of a sequence.

Automatically advances as new commits are made.

Branches in a nutshell

40

A branch and its commits history
A sequence of commits,
- A label pointer
- A branch pointer
- The HEAD pointer indicates on which object we are

currently located (in which state our directory is)

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

41

Create a new branch

Two branches now point to the same set of commits
$ git branch testing

testing

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

42

Switching between branches

HEAD now points to the testing branch
$ git checkout testing

testing

HEAD

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

43

Moving the HEAD

The testing pointer advances with each commit

$ vim test.rb
$ git commit -a -m 'made a change'

testing

HEAD

87ab2

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

44

Divergent history

The two branches have diverged

$ git checkout master
$ vim test.rb
$ git commit -a -m 'made other change'

testing

HEAD

87ab2

c2b9e

master

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

45

Divergent history
$ git log --oneline --decorate --graph --all
* c2b9e (HEAD, master) made other changes
| * 87ab2 (test) made a change
|/
* f30ab add feature #32 - ability to add new formats to the
* 34ac2 fixed bug #ch1328 - stack overflow under certain
conditions
* 98ca9 initial commit of my project

testing

HEAD

87ab2

c2b9e

master

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

Technological foundations of
software development

Manage your source code
Part 4 – Source code management platforms

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

https://github.com
https://gitlab.emse.fr/
https://gitlab.com/

47

In addition to Git...

https://git-scm.com/book/fr/v2/Les-branches-avec-Git-Branches-et-fusions%C2%A0%3A-les-bases

 Rights management
 Ticket management, Kanban
 Merge Requests / Pull Requests
 Integration and continuous deployment

(e.g. github pages)
 Wiki
 Analytics
 Integration with other applications,
 Social network for developers, and

opensource resume
48

... References to deepen this course

Pro Git (2e edition), Scott Chacon and Ben Straub, Apress, 2014, 978-1-4842-0076-6
https://git-scm.com/book/en/v2

Git reference documentation https://git-scm.com/docs

Interactive Git cheat sheet http://ndpsoftware.com/git-cheatsheet.html

Gitlab basics: https://docs.gitlab.com/ee/gitlab-basics/
Gitlab docs: https://docs.gitlab.com/ sections Agile with GitLab et Collaboration

Github guides: https://guides.github.com/introduction/flow/
https://guides.github.com/activities/forking/
https://guides.github.com/activities/socialize/

49

... your turn

Complete the TODO section:

https://ci.mines-stetienne.fr/cps2/course/tfsd/course-2.html#_todos

Technological foundations of
software development

Manage your source code
Part 2 – Git basics – complementary slides

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

51

Ignore files

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

• Ignore log files, automatically generated files, ...

$ cat .gitignore
*.log
*~
target/*

- standard shell file patterns (*, [abc], ?, [0-9], **)
- applied recursively in the working tree ;
- starts with '/': not recursive ;
- ends with a slash ('/'): directory ;
- starts with '!': include file despite other rules.

pas de fichier .a
*.a

mais suivre lib.a malgré la règle précédente
!lib.a

ignorer uniquement le fichier TODO à la racine du projet
/TODO

ignorer tous les fichiers dans le répertoire build
build/

ignorer doc/notes.txt, mais pas doc/server/arch.txt
doc/*.txt

ignorer tous les fichiers .txt sous le répertoire doc/
doc/**/*.txt

Record changes to the repository

52

Inspect indexed and non-indexed changes

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
 Please include a nice description of your changes when you submit your PR;
 if we have to read the whole diff to figure out why you're contributing
 in the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if you patch is
+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR
 that highlights your work in progress (and note in the PR title that it's

- git diff
- git diff --cached
- git difftool --tool-help

Record changes to the repository

53

Delete files

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

$ git rm index.html
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 deleted: index.html

deletes a file in the index only

deletes the file in the directory and in the index

$ rm index.html
$ git status
On branch master
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 deleted: index.html

no changes added to commit (use "git add" and/or "git commit -a")

deletes the file in the directory only
need git add index.html
(or git rm index.html)

$ git rm --cached big_file_should_be_in_gitignore.log
rm 'big_file_should_be_in_gitignore.log'
$ git status
On branch master
Untracked files:
 (use "git add <file>..." to include in what will be committed)
 big_file_should_be_in_gitignore.log

nothing added to commit but untracked files present (use "git add" to track)

Record changes to the repository

54

View the history of validations

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

$ git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

55

View the history of validations

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

$ git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

$ git log –p -2
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

diff --git a/Rakefile b/Rakefile
index a874b73..8f94139 100644
--- a/Rakefile
+++ b/Rakefile
@@ -5,7 +5,7 @@ require 'rake/gempackagetask'
 spec = Gem::Specification.new do |s|
 s.platform = Gem::Platform::RUBY
 s.name = "simplegit"
- s.version = "0.1.0"
+ s.version = "0.1.1"
 s.author = "Scott Chacon"
 s.email = "schacon@gee-mail.com"
 s.summary = "A simple gem for using Git in Ruby
code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb
index a0a60ae..47c6340 100644
--- a/lib/simplegit.rb
+++ b/lib/simplegit.rb
@@ -18,8 +18,3 @@ class SimpleGit
 end

 end
-
-if $0 == __FILE__
- git = SimpleGit.new
- puts git.show
-end
\ No newline at end of file

$ git log --stat
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

 changed the version number

 Rakefile | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

 removed unnecessary test

 lib/simplegit.rb | 5 -----
 1 file changed, 5 deletions(-)

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

 first commit

 README | 6 ++++++
 Rakefile | 23 +++++++++++++++++++++++
 lib/simplegit.rb | 25 +++++++++++++++++++++++++
 3 files changed, 54 insertions(+)

$ git log --pretty=oneline
ca82a6dff817ec66f44342007202690a93763949 changed the version
number
085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7 removed unnecessary test
a11bef06a3f659402fe7563abf99ad00de2209e6 first commit

$ git log --pretty=format:"%h - %an, %ar : %s"
ca82a6d - Scott Chacon, 6 years ago : changed the version number
085bb3b - Scott Chacon, 6 years ago : removed unnecessary test
a11bef0 - Scott Chacon, 6 years ago : first commit

$ git log --pretty=format:"%h %s" --graph
* 2d3acf9 ignore errors from SIGCHLD on trap
* 5e3ee11 Merge branch 'master' of git://github.com/dustin/grit
|\
| * 420eac9 Added a method for getting the current branch.
* | 30e367c timeout code and tests
* | 5a09431 add timeout protection to grit
* | e1193f8 support for heads with slashes in them
|/
* d6016bc require time for xmlschema
* 11d191e Merge branch 'defunkt' into local 56

View the history of validations

https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

Option Description of formatting
%H Commit checksum
%h Abbreviated commit checksum
%T Tree checksum
%t Tree abbreviated checksum
%P Parent checksums
%p Abbreviated parent checksums
%an Author's name
%ae Author's e-mail
%ad Author's date (format of -date= <option>)
%ar Author's relative date
%cn Validator name
%ce Validator's e-mail
%cd Validator date
%cr Validator relative date
%s Subject

Option Description
-p Displays the patch applied by each commit--

stat Displays the statistics of each file for
each commit

--shortstat Displays only modified/inserted/deleted
lines from the -stat option

--name-only Displays the list of files modified after the
commit information

--name-status Displays list of affected files with
add/change/delete information

--abbrev-commit Displays only the first few characters of the
SHA-1 checksum

--relative-date Displays the date in relative format (e.g. "2
weeks ago") instead of the full date format

--graph Displays in ASCII characters the graph of
branches and merges opposite the history

--pretty Displays commits in an alternative format.
Formats include oneline, short, full, fuller,
and format (where you can specify your own
format)

--oneline Convenience option corresponding to --
pretty=oneline --abbrev-commit

Option Description
-(n) Displays only the last n commits
--since, --after Limit the display to commits made

after the specified date
--until, --before Limit the display to commits made

before the specified date
--author Show only commits whose author

field matches the string passed as
argument

--committer Show only commits whose validator
field matches the string passed as
argument

--grep Show only commits whose validation
message contains the string

-S Show only commits whose add or
remove contains the string

Table 1. Useful options for git log --pretty=format Table 2. Common git log options Table 3. Options for limiting git log output

57

Cancel actions
allows to replace the last commit with a new one.

$ git commit --amend

$ git commit -m 'validation initiale'
$ git add fichier_oublie
$ git commit --amend

$ git add index.html
$ git status
On branch master
Changes to be committed:
 (use "git restore --staged <file>..." to unstage)
 modified: index.html
$ git restore --staged index.html

git explains how to de-index an already
indexed file

git explains how to undo changes in
the working directory

$ nano index.html
$ git status | grep discard
On branch master
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")
$ git restore index.html

https://git-scm.com/book/en/v2/Git-Basics-Undoing-Things
58

Working with remote repositories
$ git clone https://github.com/schacon/ticgit > /dev/null
$ cd ticgit && git remote
origin
$ git remote –v
origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)

when cloning a repository, it is named origin by default

we can then pull/push the contributions from this repository

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

59

Working with remote repositories
$ git clone https://github.com/schacon/ticgit > /dev/null
$ cd ticgit && git remote
origin
$ git remote –v
origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)

$ git remote -h
usage: git remote [-v | --verbose]
 or: git remote add [-t <branch>] [-m <master>] [-f] [--
tags | --no-tags] [--mirror=<fetch|push>] <name> <url>
 or: git remote rename <old> <new>
 or: git remote remove <name>
 or: git remote set-head <name> (-a | --auto | -d | --
delete | <branch>)
 or: git remote [-v | --verbose] show [-n] <name>
 or: git remote prune [-n | --dry-run] <name>
 or: git remote [-v | --verbose] update [-p | --prune]
[(<group> | <remote>)...]
 or: git remote set-branches [--add] <name> <branch>...
 or: git remote get-url [--push] [--all] <name>
 or: git remote set-url [--push] <name> <newurl> [<oldurl>]
 or: git remote set-url --add <name> <newurl>
 or: git remote set-url --delete <name> <url>

with git remote one can manage remote repositories:
- list remote repositories
- their names, their fetch/push urls,
- the tracked branches
- the default branch of the remote
- ...

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

when cloning a repository, it is named origin by default

we can then pull/push the contributions from this repository

60

Working with remote repositories
$ git remote add pb https://github.com/paulboone/ticgit
$ git fetch pb
remote: Counting objects: 43, done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 43 (delta 10), reused 31 (delta 5)
Unpacking objects: 100% (43/43), fait.
From https://github.com/paulboone/ticgit
 * [new branch] master -> pb/master
 * [new branch] ticgit -> pb/ticgit

git fetch:
Retrieve all information from a remote repository
- the master branch from pb is now pb/master

 No automatic merge, no local modification!

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

$ git push pb ticgit
$ # man: git push <remote> <branch>

git push:
Push to the remote repository
- ex 1: push the ticgit branch to pb
- ex 2: push branch1 to the branch2 branch of origin
- ex 3: with default values, equivalent to:

 git push origin master

 ⚠ There may be conflicts during the merge ! ⚠

$ git push origin branch1:branch2
$ # man: git push <remote> <local-ref>:<remote-ref>

$ git push

61

Tagging

• git allows you to tag states in the history

$ git tag
v0.1
v1.3

https://git-scm.com/book/en/v2/Git-Basics-Tagging

list tags

$ git tag –a v1.4 –m "Version 1.4"
$ git tag
v0.1
v1.3
v1.4

tag the current commit, with a tagging message

$ git tag -a v1.2 9fceb02
tag a specific commit

$ git push origin v1.2

push a tag
is not done by default during git push, except with the --tags option
$ git push origin --tags

$ git tag –d v1.4
$ git push origin –delete v1.4 deleting a tag

and deletion on the remote server
62

Tagging
$ git checkout v2.29.2
Note : basculement sur 'v2.29.2'.

You are in the "HEAD detached" state. You can visit,
make experimental modifications and and validate them.
You just need to make another switch to
abandon the commits you make in this state without
impacting the other branches

If you want to create a new branch to keep the commits
you create,
you just use the -c option of the switch command like
this:

 git switch -c <name-of-new-branch>

Or undo this operation with :

 git switch -

Disable this advice by setting the advice.detachedHead
configuration variable to false

HEAD is now on 898f80736c Git 2.29.2

$ git checkout v2.29.1
HEAD's previous position was on 898f80736c Git 2.29.2
HEAD is now on b927c80531 Git 2.29.1

https://git-scm.com/book/en/v2/Git-Basics-Tagging

in the "detached HEAD" state,
a new commit would not belong to any branch
it would be reachable only with its exact footprint
it is better to create a branch
for example: $ git checkout -b v2.29.X

Basculement sur la nouvelle branche 'v2.29.X'

Technological foundations of
software development

Manage your source code
Part 3 – Branching and merging with Git – complementary slides

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

64

Notes

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches in a nutshell

65

Scenario
Branching and merging

At this point, you get a call that a critical problem has been discovered and
needs to be addressed as soon as possible.
So you do the following:

1. you are working on a web site;
2. you create a branch for a new article in progress;
3. you start working on this branch.

1. you switch to the production branch;
2. you create a branch to add the patch;
3. after testing it, you merge the patch branch and push the result to production;
4. you switch back to the initial branch and continue your work

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

66

Scenario
1. you are working on a web site;

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

HEAD

Branching and merging

67

Scenario
1. you are working on a web site;
2. you create a branch for a new article in progress;

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Creation of a new branch iss53 to work
on issue #53

$ git checkout -b iss53
Switched to a new branch "iss53"

$ git branch iss53
$ git checkout iss53

HEAD

Branching and merging

68

Scenario
1. you are working on a web site;
2. you create a branch for a new article in progress;
3. you start working on this branch.

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Example of a new commit on branch iss53

$ vim index.html
$ git commit -a -m "add footer [issue 53]"

HEAD

Branching and merging

69

Scenario

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

At this point, you get a call that a critical problem has been discovered and
needs to be addressed as soon as possible.

HEAD

Branching and merging

70

Scenario

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

HEAD

1. you switch to the production branch;
$ git checkout master
Switched to branch 'master'

Branching and merging

71

Scenario

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

HEAD

2. you create a branch to add the patch;

$ git checkout -b patch
Switched to a new branch patch'
$ vim index.html
$ git commit -a -m "incorrect email address"
[correctif 1fb7853] "incorrect email address"
 1 file changed, 2 insertions(+)

Branching and merging

72

Scenario

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

HEAD

$ git checkout master
$ git merge patch
Updating f42c576..3a0874c
Fast-forward
 index.html | 2 ++
 1 file changed, 2 insertions(+)

3. after testing it, you merge the patch branch and push the result to production;

Fast-forward: simple déplacement
du pointeur vers l’avant

Branching and merging

73

Scenario

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

HEAD

$ git branch -d patch
Deleted branch patch (3a0874c).

4. you switch back to the initial branch and continue your work

Delete branch hotfix

$ git checkout iss53
Switched to branch "iss53"
$ vim index.html
$ git commit -a -m ‘New footer finished [issue 53]'
[iss53 ad82d7a] New footer finished [issue 53]
1 file changed, 1 insertion(+)

Switch to branch iss53 and create new commits

Branching and merging

74

$ git checkout master
Switched to branch 'master'
$ git merge iss53
Merge made by the 'recursive' strategy.
README | 1 +
1 file changed, 1 insertion(+)

Merging

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

‘recusive’ strategy: Simple 3-sources fusion

HEAD

Branching and merging

75

Merging

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

HEAD

$ git checkout master
Switched to branch 'master'
$ git merge iss53
Merge made by the 'recursive' strategy.
README | 1 +
1 file changed, 1 insertion(+)

‘recusive’ strategy: Simple 3-sources fusion

Branching and merging

76

Merge conflicts

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

$ git merge iss53
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.

Example of a merger conflict to be resolved

$ git status
On branch master
You have unmerged paths.
 (fix conflicts and run "git commit")

Unmerged paths:
 (use "git add <file>..." to mark resolution)

 both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>
======
<div id="footer">
 please contact us at support@github.com
</div>
>>>>>>> iss53:index.html

Contents of the index.html file
with conflict markers

Branching and merging

77

Merge conflicts

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

We mark this conflict "resolved".

<div id="footer">
please contact us at email.support@github.com
</div>

<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>
======
<div id="footer">
 please contact us at support@github.com
</div>
>>>>>>> iss53:index.htmlExample of manual resolution

$ git add index.html

We finalize the commit

$ git status
On branch master
All conflicts fixed but you are still merging.
 (use "git commit" to conclude merge)

Changes to be committed:

 modified: index.html

$ git commit

Branching and merging

78

Remote branches

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

The
<remote>/<branch>
branch is unmodifiable.
It is a bookmark to
indicate the state of the
remote branch

79

Remote branches

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Local and remote work may differ

80

Remote branches

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

I push my changes on the remote server

$ git push origin issue-53
Counting objects: 24, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (15/15), done.
Writing objects: 100% (24/24), 1.91 KiB | 0 bytes/s, done.
Total 24 (delta 2), reused 0 (delta 0)
To https://github.com/schacon/simplegit
 * [new branch] issue-53 -> issue-53

My colleague creates a modifiable local branch issue-53,
based on the state of origin/issue-53

$ git checkout -b issue-53 origin/issue-53
Branch issue-53 set up to track remote branch issue-53 from origin.
Switched to a new branch 'issue-53'

My colleague retrieves the changes

$ git fetch origin
remote: Counting objects: 7, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 0), reused 3 (delta 0)
Unpacking objects: 100% (3/3), done.
From https://github.com/schacon/simplegit
 * [new branch] issue-53 -> origin/issue-53

81

Remote branches

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Create issue-53 that "follows" origin/issue-53
Allows you to push and pull from origin/issue-53 by default

$ git checkout -b issue-53 origin/issue-53
Branch issue-53 set up to track remote branch issue-53 from origin.
Switched to a new branch 'issue-53'

Shortcut: automatic naming of the created branch

$ git checkout --track origin/issue-53
Branch issue-53 set up to track remote branch issue-53 from origin.
Switched to a new branch 'issue-53'

Shortcut: if issue-53 does not exist, and exists on a single remote

$ git checkout issue-53
Branch issue-53 set up to track remote branch issue-53 from origin.
Switched to a new branch 'issue-53'

82

Remote branches

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Visualize the branches and the branches they are configured to follow

$ git branch -vv
 iss53 7e424c3 [origin/iss53: ahead 2] forgot the brackets
 master 1ae2a45 [origin/master] deploying index fix
* correctionserveur f8674d9 [equipe1/correction-serveur-ok: ahead 3, behind 1] this should do it
 test 5ea463a trying something new

Shortcut for git fetch then git merge

$ git pull issue-53

