Technological foundations of
software development

Manage your source code

ICM — Computer Science Major — Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

Maxime Lefrancois https://maxime-lefrancois.info

online: https://ci.mines-stetienne.fr/cps2/course/tfsd,

Technological foundations of
software development

Manage your source code
Part 1: generalities

ICM — Computer Science Major — Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

Maxime Lefrangois https://maxime-lefrancois.info

online: https://ci.mines-stetienne.fr/cps2/course/tfsd

Objectives of the session

Ensure you are familiar with source code management methodologies
and tools, in particular the git software, the gitlab platform used at
school, and the github platform.

“FINALdoc

Why track versions ?

Example: many versions of the same file !
CEmAL doc!

1 i
INAL _rev.6.COMMENTS. d FINAL _rev.8.commentsS.
FINAL _rev.6.COMMENTS.doc e

JoRaE CHAM@2012

- bl
FINAL_rev.18.commente?. FlNAL_(ev‘ZZ‘commefnfs‘i‘?A
corrections?. MORE.30.dot corrections.|0.#@$WWHYDID

WWW.PHDCOMICS. COM

Track changes in a file Why save versions ?

Example with Word B

Twas the Night Before Christmas.doc - Word

Example: to restore to a previous state
REFERENCES MAILINGS REVIEW VIEW

INSERT DESIGN PAGE LAYOUT

D
% @$ I:v‘ Previous [5 }rzj, All Markup J []

A Next Z |2 show Markup - =
siite Language New Delete Track Accept -
L - Comment Show Comments | ¢hanges - [Reviewing Pane .2
Ljnguage Comments ‘ Tracking SimplfMarkup b Return to Zero

f 2 —¥ All Markup e ¥ - P
B TrackChanges || WHATS THIS CUP OF USB PRIVEST AYY I DUMP THEM

| 'Twas the Night Bbefore Christmas: A Visi| [Leck Tracking |4 0riginal E

by Clement Clarke Moore (1779-1863)

4

REALL IN HeRS
A, THATS How T MAKE A NEW
VERSION - CoNTROL = -

MY FILES...
Twas the night before Christmas, when all through the house
-Not a ereature-teacher was stirring, not even a-euse spouse.
-The stockings were flung huas-by the chimney-with-eare | swear,
In hopes that St Miehelas-Nick seer-weald-be-therais on Medicare.

The children were nestled all snug in the shedirbeds,
While millions wisieas-of beanie babies sugarphsms-danced ir-on their sledkeads.
And masa in her spurs-kerehkief, and | in my chapseap,

Had just settled a quarrel over reggae or rapes+brains

. .]
& o

EEWeb.com

hitp://lbrary.ucmerced.edu/node/66631

For code ? For code ?

Some IDEs have embedded solutions

Some IDEs have embedded solutions
For example with Eclipse

Local version management

For example with Eclipse
- - Local Computer
(B crc+ - CodeWar Ecicss “codaW:
File Edit Search Project Run MQXTools Processor Expert Window File Edit Search Project Run MQXTools Processor Expert Window
BRI ST R AR DL oy ——— =R IR S B AT BESE
e » =8 Fhmal | New y =B Checkout Version Database
= Check files to restore from local history: Select an edition of a file:
ol - 5 120 - Available Files in Local History: 2 Local History of ‘application.c’ Gine L
F\\egme Openin New Window] B Today (Apr3, 2013) B F“E;’“E Open in New Window
Freedom © 9:10:06 AM = Freedom, 3
P Preprocess © 50953 Am H PE P Version 3
= D 9:09:52 AM =2
. Lo
" sopcsionc R .
 Crestedons Apr3, 203 i Version 2
Team » " Author tastyger Team ’
o > / o > ’
Restore from Local History.) « B Restore from Local History.)
» » 1
LEREL)
Properties eciore, ncel Properties
rofier . brofir .
o 120 Show In Windows Explorer ot 120 Show In Windows Explorer
7

File synchronization software Diff utilities

https://en.wikipedia.org/wiki/Diff

Many solutions exist
https://en.wikipedia.org/wiki/Comparison of file synchronization software
- commercial or open-source

Diff , cmp and comm

- local, or with server, or with cloud - Diff command. o
r<\/nc diff command will compare the two fles line by line and print eneclc Mo Nock: olo-N- - Ne cle b ol kol
out the differences between. .

- personal or collaborative folders

+ Syntax : diff [option] files
Gilos sfe: Eatters tuntets ceorat
[— W
JwaH 0000 00 0€e B
-, 1996
ravne - cmp command compares the two files byte by byte with two
~ iR x options : -1, -5
<) etz + Comm command finds lines that are identical in two files
e S——— et Activities Sharing Versions
e <> o ° W i, comp, cornm, cltaols . _ Compared :
S Fromas ° e T
9 minutes ago Araxis merge, software
<> # -] & ecs yon emal
e —————————— R r—— mroo ownCloud, 2010
e ——
- https://text-compare.com/, online
dirsyncpro, 2004 dropbox, 2007 9 ps:// p: / 10

Diff utilities Content comparison utilities

https://en-WIklpedl_a.org/WIkl/lef https://en.wikipedia.org/wiki/Content _similarity detection
syntax - semantics Example: plagiarism detection

17 &8 H|e FECVEZZ+ 4B BAHQ
e T — " P—

& ittese D2 - uox
@ fie Est View Merge Tools Plgins Window Help e x Search Results
Na8 2 (;Z Plag
<
e

Eilename - tineotr; filensme - tineotr - 5 ExporteaCitieselector (ine54)) ErportedCiiessdlector ine34) Ay oy
3 3] ExportedCitiesSelector (ine 79)) ExportedCitiesSelector (lne 79) — o T el Faiond
B] B)

/ mo o and extension (+ opt
i€ ((bakeach longzh() + filoname.length
< MAX_PATH) < MAX_PATH_FULL) ‘

) else if (counties I+ null 88 lcounties. istmpty()) {
ListcCityInfo> citiesselectedrorExporting = new A
nCatrath (bakrat I ListcCountryInfos allCountries = celnfoprovider.g

For (String region
i

st
Lizt<CountryInfos sllCount:

REatEath (sakPath

BakPath - path

’ For (string EOURERYCARGNARES : EOUESSE) (For (String CaURERIBRE
i RN {Callntey Tal oty TS ge e Fee i — | for (CountryInfo countryInfo : allCountries) |

3f (countryInfo. getiiame) . cqual=IgnoreCas if (countryInfo. getliane() . equal=TgnoreCa == P E = o
it (once - citiesSelectedrorExporting.addall (cou citiesSelectedrorExporting. addall(co E = _
¢ 1 } » i e
} A
' ,

P —

success = CopyFile (pazpathic ste();

= 1oy Len (17 L (poezath)
) A

i [) L
Seeing mog - avnutiias s String mag - strutiiesfomar_strin, o — —

. : e > ; 56 (regions 1= null &8 Iregions. istmpty()) { rivate static ListcCityInfos zelectallc S

e Lo corso o stmoonaz2 return getAllFromtegions (regions); ListcCigyInfo, citiesselectedrors Lg" s EEE EE e TR
WinMerge s e = =

. @ St 15 ¢loelaam ol - B e MR =
- Ed J R
Aty of projctpoduct-spoter (ngerserch) -2 matches + 3 idden - o B OO= — =
L nes m cponedCiieseectoTes, ConsaleRunner 1 g = —
1 e n ExportedCitesSeector (2 e SRR e
KDiff3, open-source [- — 3
In Eclipse i | e = =
S L
e . codeqliiry, shareware
1 Lseming qfiy, 12

Iplag, freeware

VCS- Version Control System

Definition

A tool that helps developers/programmers
solve certain day-to-day problems, such as:
tracking code changes, helping with code
maintenance, and allowing them to work on
the same source code files without affecting
each other's workflow.

Concepts

* make a local copy of a remote repository
* make changes, commit changes ("submit")

* divergent branches containing version
sequences

* merge branches, with resolution of possible
conflicts

* tag versions
* propose revisions (PR, pull request)

Trunks

il

Tags

https://en.wikipedia.org/wiki/Version_control

Trunk

il

Tags

https://en.wikipedia.org/wiki/Version_control

Trunks

VCS- Version Control System

Objectives

* Generate backups ‘
* Test and experiment

Tags

* Keep history and track changes
* Collaborate and contribute remotely

' Discontinued
development
branch

https://en wikipedia.org/wiki/Version_control

Centralized version management

] | D)
Version 2 L
Computer B ‘ Corfa @arhst

A
Central VCS Server e ® K
Computer A a

m‘\ Version Database
\
Version 3 Cvs

PERFORCE

Main limitation:

single point of failure

Distributed version management

Server Computer

Version Database

git

‘ mercurial

Version 1

~
>

Computer A Computer B

o o

Version Database || »| | Version Database

@ darcs

Version 3 Version 3
| (Bazaar)
Version 2 Version 2
Version 1 Vers‘iun 6
17
oo

E |

SVN — Apache Subversion e—
2 R

Homepage http://subversion.apache.org/ ‘ g \ i
SVN Book http://svnbook.red-bean.com/ e il
Limitations /
* centralized system

) Resolve Conflicts e
* no time stamping svn resolve v copy, svn move
* no history management, global version numbering

* network almost always necessary

Fix Problems

* poorly managed "move" operation (delete + add) svn revert

https://docs.oracle.com/middleware/1221/core/MAVEN/config_svn.htm

* no normalization of file names

6 [9] iy 15-18
Merges
Di o
18]

Trunk
Tags

hitps://en.wikipedia.org/wiki/Apache_Subversion

History

— lgit]
5 100000 lsvn]
3 —— [mercurial]
T [bazaar]
3 80000
£
Mercurial is -
created by £
Matt Mackall.
BitKeeper is § 60000
created by Gitis Y
Bitmover, created 2
Inc. by Linus el
Torvalds. 5 40000
SCCsis RCS is Cvsis Monotone E
created by created created is created 2
Marc by Walter by Dick by 5 20000
Rochkind. Tichy. Grune. Graydon 5
Hoare.

0

2006

o @0 e @ 0P 0 0 ¢ e 0
Perforce Helix Darcs is
https://initialcommit.com/blog/Technical-Guide-VCS-Internals Core lereied created
by Perforce by David
Software, Inc. Roundy.
Bazaar
is
SN created.
by
Collabnet
Inc: Fossilis
created by
Dwayne
Richard Hipp.
18

Git git

(which means "unpleasant person" in British English slang). : "I'm an egotistical bastard, and | name all my projects

after myself. First 'Linux', now 'git'." The man page describes Git as "the stupid content tracker".

developers initialy Linus Torvalds. Mainly Junio Hamano +1620 1o updte: htos/Jgtub.com it araphs conrbutrs
first version 2005

current version V2.41.0 o huossins conjaisireiases

license GPLv2 (free, open-source)

history
* Linux kernel contributions before 2002: patches transmitted and integrated by hand
* Linux kernel development 2002-2005: VCS distributed BitKeeper
* 2005: BitKeeper becomes payware, Linux Torvalds develops git with the following goals:
* speed;
* simple design ;
support for non-linear development (thousands of parallel branches) ;
fully distributed ;
ability to efficiently manage large projects such as the Linux kernel (speed and data compactness)

hitps//en.wikipedia.org/wiki/Git 20

Checkins Over Time

Philosophy

CVS, Subversion, Perforce, Bazaar, etc. File A —» AL S — a2
Save information as changes to files

Technological foundations of pr—_p
software development - @

Manage your source code Checkins Over Time

How git works: ‘

glt Stores data as snapshots of the project fitlei i “‘1 A‘Z ‘ A‘2

over time . . .
File B { B 1 4 B Bl B2
snapshot flow |
ICM — Computer Science Major — Course unit on Technological foundations of computer science (P) (AT J Tonane, ‘

M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development File C a €2 - c2 / 3

Maxime Lefrancois https://maxime-lefrancois.info Gith3e 22

online: https://ci.mines-stetienne.fr/cps2/course/tfsd

Philosophy How to use git- softwares

Almost all operations are local
* remote repository = local directory
* no need to constantly access the central server

Git manages Integrlty GitHub Desktop SourceTree GitKraken Magit
Platforms: Mac, Windows Platforms: Mac, Windows Platforms: Linux, Mac, Windows Platforms: Linux, Mac, Windows
. . . Price, Tres e Price Fres | $30 845 Price: Free
* id of a repo state = checksum(previous id, changes) Ticense: ST Ticonse: proprietary Ticense: Froprictars Lioonse: GNU GFL

* SHA-1 (40 hex characters, example 24b9da6552252987aa493b52f8696cd6d3b08373)
* git indexes the data by these checksum

Generally, Gitonlyaddsdata ~ pmeeeessee s domn o0 L PR 20T BRI
* almost impossible to lose permanently a repo state == EEo b
* even undo actions are stored as a new change e SR e e e et e o wintons
. . Price: Free Price: Free Price: $79/user / Free for non-commercial use Price: $69/user (Free 30 day trial)
¢ gives freedom to experiment safely License: GNU GPL License: GNU GPL License: Propristary License: Proprietary
— - 2 2

hitps://eit sem.com/downloads/guis

How to use git- CLI

[2] miefranc@FAYOL-LEFRANCOIS-M: ~

LSL2:~$ git help

ersion] [--help] [-C <path>] [-C <name>=<value>]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--uork-tree=<path>] [--namespace=<name>]
<command> [<args>]

IThese are common Git commands used in various situations:

lstart a working area (see also: git help tutorial)
clone Clone a repository into a neu directory
init Create an empty Git repository or reinitialize an existing one

Work on the current change (see also: git help everyday)
Add file contents to the index

mv Move or rename a file, a directory, or a symlink
restore Restore uorking tree files
rm Remove files from the working tree and from the index

sparse-checkout Initialize and modify the sparse-checkout

lexamine the history and state (see also: git help revisions)

bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep print lines matching a pattern

Tog Show commit logs

show Show various types of objects

status Show the working tree status

lgrow, mark and tuweak your common history
branch List, create, or delete branches

Option 1 to start a Git repository:
Initialize a Git repository in a directory

@ $ tree -a .

L— git
@ — HEAD
it init — branches
$ git ir . : . » [contig
Initialized empty Git repository in . — description
— hooks

(33 git add *.html
$ git add README.md

}— applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
pre-merge-commit.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
prepare-commit-msg.sample
update.sample

[TTTTTTTTTT

-
5
o

n
exclude
bjects
info

*
T&T

X . s s
$ git commit -m 'first version L pack

— refs
heads
tag

How to use git- CLI

* Obtain help

$ git help <commande>
$ git <commande> --help
$ man git-<commande>

* Obtain a concise version of the help

$ git <commande> -h

Option 2 to start a Git repository:
Clone an existing Git repository

() $ git clone https://github.com/FFmpeg/FFmpeg
Cloning into 'FFmpeg'...
remote: Enumerating objects: 633677, done.

remote: Total 633677 (delta ©), reused @ (delta @), pack-reused 633677
Receiving objects: 100% (633677/633677), 263.28 MiB | 11.00 MiB/s, done.

Resolving deltas: 100% (498066/498066), done.
Updating files: 100% (7479/7479), done.

<:)$ cd FFmpeg/
$ git status
On branch master
Your branch is up to date with 'origin/master’.

nothing to commit, working tree clean

Three repo areas:
working directory, index area, git directory

modified: file modified but not validated in the DB Where metadata,

project database,
compressed snapshots
are stored
.git directory . .
?Repository) copied when cloning

from a remote
repository

Three file states: modified, indexed, validated.

indexed: file marked to be part of the next snapshot a unique project
extraction

validated: data safely stored in the local database L\
Directory

Staging
Area

Working Directory Index Local repo Checkout the project

File is edited

git add .. % git commit .. %
—— _—

simple file that
stores what will be
in the next snapshot

Stage Fixes

Commit

Working directory, index area and Git directory

is-Gits3F 29 rapide Rudiments de-Git 30

Record changes to the repository Record changes to the repository
File states life cycle Check the files state
not tracked tracked
\ \ $ git status
o N o A On branch master - no tracked files have been modified
. Your branch is up to date with 'origin/master'. - no untracked files
Untracked Unmodified Modified Staged master branch

nothing to commit, working tree clean

Add the file $ echo "My project" > README.md

$ git status
On branch master

_— Index the file No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)
README . md

Edit the file I

Stage the file

Remove the file

nothing added to commit but untracked files present (use "git
add" to track) % - new untracked file detected

Commit
Record the
indexed changes

31 32

Record changes to the repository
Index changed files

$ nano index.html

$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>...
new file: README . md

to unstage)

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working
directory)
modified: index.html

Record changes to the repository
Index changed files

$ git add index.html

$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>...
new file: README . md
modified: index.html

to unstage)

$ nano index.html

$ git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: README . md
modified: index.html
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working
directory)

modified: index.html

{ - editing an existing file

- README.md file tracked and indexed
- index.html file modified

- Index index.html

Record changes to the repository
Index changed files

$ git add index.html

$ git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: README . md
modified: index.html

$ nano index.html

$ git status
On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)
new file: README . md
modified: index.html

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working
directory)
modified: index.html

- README.md tracked and indexed
- index.html file tracked and indexed

~J- modified index. html

- index.html file indexed
when running git add
- then modified

Record changes to the repository
Commit changes

$ git commit -h
usage: git commit [<options>] [--] <pathspec>...

Commit message options
-F, --file <file> read message from file
--author <author> override author for commit
--date <date> override date for commit
-m, --message <message>
commit message
--status include status in commit message template

Commit contents options

-a, --all commit all changed files

-i, --include add specified files to index for commit
--dry-run show what would be committed

--short show status concisely

--branch show branch information

--amend amend previous commit

- Index index.html

- README.md tracked and indexed
- index.html file tracked and indexed

I~ modified index.htm1

- git commit -a
skip the indexing step

Technological foundations of
software development

Manage your source code
Part 3 — Branching and merging with Git

git

ICM — Computer Science Major — Course unit on Technological foundations of computer science

M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

Maxime Lefrangois https://maxime-lefrancois.info

online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

Branches in a nutshell
Commits and their parents

New changes: each commit stores a pointer to the previous
commit(s)
98cag 34ac2 f30ab
commit size commit size commit size
tree 92ec2 tree 184ca tree 0de24
parent parent 98ca9 parent 34ac2
author Scott - author Scott - author Scott
committer Scott committer Scott committer Scott
The initial commit of my project Fixed bug #1326 - stack overflow add feature #32 - ability t

certain conditions formats to the centr

Branch = pointer to the last commit of a sequence.

Automatically advances as new commits are made.

Branches in a nutshell
A commit and its tree

First commit of a repository with three files indexed, then validated
Calculated checksum: SHA-1

$ git init

$ git add README test.rb LICENSE

$ git commit -m 'initial commit of my project®
$ git tree -a blob size

== Testing Library

This Library is used to test
Ruby projects.

98cad
commit size blob size
tree 2ec e -
author Scott The MIT License
committer Scott cb: est.rb Copyright (c) 2008 Scott Chacon
The initial commit of my project

Permission is hereby granted,
tree of charge, to any person

blob size

squire 'logger’
require 'test/unit'

class Test::Unit::TestCase

Branches in a nutshell
A branch and its commits history

A sequence of commits,

- Alabel pointer

= A branch pointer

- The HEAD pointer indicates on which object we are
currently located (in which state our directory is)

HEAD

master

98ca9 S 34ac2 e f30ab

Snapshot A Snapshot B ﬁ

Branches in a nutshell Branches in a nutshell
Create a new branch Switching between branches

$ git branch testing $ git checkout testing
Two branches now point to the same set of commits HEAD now points to the testing branch

master

testi
98ca9 < 34ac2 <« f3@ab 4 | ol 98ca9 <« 34ac2 <—— f30ab /m

4

Snapshot A Snapshot B Snapshot A Snapshot B ﬁ

Branches in a nutshell Branches in a nutshell

Moving the HEAD Divergent history

$ vim test.rb $ git checkout master
$ git commit -a -m 'made a change' $ vim test.rb
$ git commit -a -m 'made other change'

The testing pointer advances with each commit

The two branches have diverged

testing

/ c2b9e

98ca9 - 34ac2 - f30ab +— 87ab2 98ca9 B — 34ac2 i f30ab
- 87ab2

Snapshot A Snapshot B Snapshot A Snapshot B ﬁ

43

Branches in a nutshell

Divergent history

$ git log --oneline --decorate --graph --all

* c2b9e (HEAD, master) made other changes

| * 87ab2 (test) made a change

1/

* f30ab add feature #32 - ability to add new formats to the
* 34ac2 fixed bug #ch1328 - stack overflow under certain
conditions

* 98ca9 initial commit of my project

98ca9 34ac2 f30ab

Snapshot A Snapshot B

In addition to Git...

v Rights management

v" Ticket management, Kanban

v" Merge Requests / Pull Requests

v Integration and continuous deployment
(e.g. github pages)

v Wiki

v Analytics

v"Integration with other applications,

v" Social network for developers, and

opensource resume

HEAD

master

/ c2b9e

A B 87ab2

45

006

Technological foundations of
software development

Manage your source code
Part 4 — Source code management platforms

& Gitlab___ & GitHub

ICM — Computer Science Major — Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

Maxime Lefrancois https://maxime-lefrancois.info

online: https://ci.mines-stetienne.fr/cps2/course/tfsd,

https://github.com

References to deepen this course

Pro Git (2e edition), Scott Chacon and Ben Straub, Apress, 2014, 978-1-4842-0076-6
https://git-scm.com/book/en/v2

Git reference documentation https://git-scm.com/docs

Interactive Git cheat sheet http://ndpsoftware.com/git-cheatsheet.html

Gitlab basics: https://docs.gitlab.com/ee/gitlab-basics/
Gitlab docs: https://docs.gitlab.com/ sections Agile with GitLab et Collaboration

Github guides: https://guides.github.com/introduction/flow/
https://guides.github.com/activities/forking/
https://guides.github.com/activities/socialize/

... your turn

Complete the T0DO section Technological foundations of
https://ci.mines-stetienne.fr/cps2/course/tfsd/course-2.html# todos SOftwa re development

Manage your source code

Part 2 — Git basics — complementary slides
.t
ICM — Computer Science Major — Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

49 Maxime Lefrangois https://maxime-lefrancois.info

online: https://ci.mines-stetienne.fr/cps2/course/tfsd,

Record changes to the repository Record changes to the repository
lgnore files Inspect indexed and non-indexed changes

* Ignore log files, automatically generated files, ...

$ cat .gitignore $ git diff
*.log diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
Fe # pas de fichier .a index 8ebb991..643e24f 100644
target/* *.a --- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
mais suivre lib.a malgré la régle précédente @@ -65,7 +65,8 @@ branch directly, things can get messy.
1lib.a

Please include a nice description of your changes when you submit your PR;

- standard shell file patterns (*, [abc], ?, [0-9], **) o ferey W o Ffer D D 18 reeie dy e :!.f we ha\{e to read the t:Jhole dlff'to figure out why you're contributing
- applied recursively in the working tree ; /T0DO in the first place, you're less likely to get feedback and have your change
- starts with '/': not recursive ; -merged }n. .))))
- ends with a slash ('/'): directory ; # ignorer tous les fichiers dans le répertoire build +merged in. Also, split your changes into comprehensive chunks if you patch is
- starts with 'I'": include file despite other rules. build/ +longer than a dozen lines.
:og:o:i; COAIEESHEEE, (S (S CaR/EaRan e If you are starting to work on a particular area, feel free to submit a PR - git diff
that highlights your work in progress (and note in the PR title that it's - git diff --cached

gog::;irtzius les fichiers .txt sous le répertoire doc/ - git difftool --tool—help

Record changes to the repository

Delete files

$ rm index.html
$ git status
On branch master
Changes not staged for commit:
(use "git add/rm <file>...
(use "git restore <file>..."
deleted: index.html

no changes added to commit (use "git add" and/or "git commit -a")

$ git rm index.html

$ git status

On branch master
Changes to be committed:

(use "git restore --staged <file>..." to unstage)

deleted: index.html

to discard changes in working directory)

to update what will be committed)

deletes the file in the directory only

need git add index.html

(orgit rm index.html)

ﬁ deletes the file in the directory and in the index ‘

$ git rm --cached big_file_should_be_in_gitignore.log

rm 'big_file_should_be_in_gitignore.log"
$ git status
On branch master
Untracked files:
(use "git add <file>...
big_file_should_be_in_gitignore.log

" to include in what will be committed)

ﬁ deletes a file in the index only

nothing added to commit but untracked files present (use "git add" to track)

View the history of validations

$ git log
commit caB2a6dfF817ec66f44342007202690293763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mon Mar 17 21:52:11 2008 -0700

changed the version number

commit @85bb3bch6e8e1e8451d4b2432F8eche6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test

commit allbefe6a3fe59402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.cor
Date: Sat Mar 15 10:31:28 2008 -0700

fFirst commit

git log --pretty=oneline
CaB2a6AFF817ec6644342007202690293763949 changed the version

number
test

al1bef06a3f659402Fe7563abF99ad00de2209e6 First commit

$ git log --pretty=format:"%h - %an, %ar : %
caB2a6d - Scott Chacon, 6 years ago : changed the version number
85bb3b - Scott Chacon, 6 years ago : removed unnecessary test
allbefo - Scott Chacon, 6 years ago : first commit

$ git log --pretty=fornat:"%h ¥s" --graph
* 2d3acf9 ignore errors from SIGCHLD on trap

Se3eell Merge branch ‘master’ of git://github.con/dustin/grit
\

* 420eaco Added a method for getting the current branch.

| 30e367c timeout code and tests

| 5209431 add timeout protection to grit

| €1193¢8 support for heads with slashes in them
/

d6616be require time for xmlschena

|
|
|
* 11d191e Merge branch ‘defunkt’ into local

$ git log -p -2
comnit caB2a6dff817ec66F44342007202690293763949
Author: Scott Chacon <schacon@igee-nail.com>
Date: Mon Mar 17 21:52:11 2008 -6760

changed the version number

4iFF --git a/Rakefile b/Rakefile
index a874b73..8£94139 100644

-~ a/Rakefile

+++ b/Rakefile

@ -5,7 +5,7 @@ require ‘rake/gempackagetask’
spec = Gen: :Specification.new do |s|

s.platform = Gem::Platform::RUBY
s.name = “simplegit”
- s.wersion = 'e.1.0"
+ s.ersion = "0.1.1"
s.author = "Scott Chacon”
s.email = "schacon@gee-mail.com"
S.summary = "A simple gem for using Git in Ruby

code.”
commit @85bb3bcbEOBe1e8451d4b2432FBeche6306e7eT
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 16:40:33 2008 -0706

removed unnecessary test

diFf --git a/lib/sinplegit.rb b/1ib/simplegit.rb
index a@aceae. .47c6340 100644
--- a/1ib/simplegit.rb
+++ b/1ib/sinplegit.rb
@ -18,8 +18,3 @8 class SimpleGit

end

git = SimpleGit.new
- puts git.show
-end

\ No newline at end of file

$ git log --stat
commit caB2a6dff817ec66F44342007202690293763949
Author: Scott Chacon <schacon@gee-mail.com>
Date: Mo Mar 17 21:52:11 2008 -6700

changed the version number

Rakefile | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

commit 08Sbb3bcbGoBele84s1dab2432fBecbe6306e7eT
Author: Scott Chacon <schacon@gee-mail.cor
Date: sat Mar 15 16:40:33 2008 -6760

removed unnecessary test

1ib/sinplegit.rb | 5 -----
1 file changed, 5

commit allbefe6a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date: Sat Mar 15 10:31:28 2008 -0700

First commit

View the history of validations

$ git log

commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>

Date: Mon Mar 17 21:52:11 2008 -0700

changed the version number

commit @85bb3bcb608ele8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 16:40:33 2008 -0700

removed unnecessary test

commit allbef@6a3f659402fe7563abf99adeede2209e6
Author: Scott Chacon <schacon@gee-mail.com>

Date: Sat Mar 15 10:31:28 2008 -0700

first commit

View the history of validations

Table 1. Useful options for git log ~pretty=format

Table 2. Common git log options

Table 3. Options for limiting git log output

Option Description of formatting

%H Commit checksum

%h Abbreviated commit checksum
%T Tree checksum

%t Tree abbreviated checksum
%P Parent checksums

%p Abbreviated parent checksums

%an Author's name

Y%ae Author's e-mail

%ad Author's date (format of -date= <option>)
Y%ar Author's relative date

%en Validator name

%ce Validator's e-mail

Y%cd Validator date

%cr Validator relative date

%s Subject

README 6 +rrrer
Rakefile | 23 trrbessbririrrssssse
ib/si rb | 25

3 files changed, 54 insertions(+)

Option Description

-p Displays the patch applied by each commit--
stat Displays the statistics of each file for
each commit

—-shortstat Displays only modified/inserted/deleted
lines from the -stat option

--name-only Displays the list of files modified after the
commit information

—name-status Displays list of affected files with
add/change/delete information

—-abbrev-commit Displays only the first few characters of the
SHA-1 checksum

—relative-date Displays the date in relative format (e.g. "2
weeks ago") instead of the full date format

—-graph Displays in ASCII characters the graph of
branches and merges opposite the history
—-pretty Displays commits in an alternative format.

Formats include oneline, short, full, fuller,

and format (where you can specify your own

format)
—oneline Convenience option corresponding to
pretty=oneline --abbrev-commit

Option Description

-(n) Displays only the last n commits

—since, --after Limit the display to commits made
after the specified date

—-until, --before Limit the display to commits made
before the specified date

--author Show only commits whose author
field matches the string passed as
argument

--committer Show only commits whose validator
field matches the string passed as
argument

—grep Show only commits whose validation
message contains the string

S Show only commits whose add or
remove contains the string

Cancel actions

$ git commit --amend

$ git commit -m 'validation initiale'
$ git add fichier_oublie

$ git commit --amend

$ git add index.html
$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>...
modified: index.html
$ git restore --staged index.html

$ nano index.html

$ git status | grep discard
On branch master

Changes not staged for commit:

to unstage)

ﬁ allows to replace the last commit with a new one.

git explains how to de-index an already
indexed file

git explains how to undo changes in
the working directory

(use "git add <file>..." to update what will be committed)

(use "git restore <file>...
modified: index.html

to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")

$ git restore index.html

Working with remote repositories

$ git clone https://github.com/schacon/ticgit > /dev/null
$ cd ticgit & git remote

origin

$ git remote -v

origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)

$ git remote -h
usage: git remote [-v | --verbose]
or: git remote add [-t <branch>] [-m <master>] [-f] [--
tags | --no-tags] [--mirror=<fetch|push>] <name> <url>
or: git remote rename <old> <new>
or: git remote remove <name>

or: git remote set-head <name> (-a | --auto | -d | --
delete | <branch>)

or: git remote [-v | --verbose] show [-n] <name>

or: git remote prune [-n | --dry-run] <name>

or: git remote [-v | --verbose] update [-p | --prune]

[(<group> | <remote>)...]
or: git remote set-branches [--add] <name> <branch>...
or: git remote get-url [--push] [--all] <name>
or: git remote set-url [--push] <name> <newurl> [<oldurl>]
or: git remote set-url --add <name> <newurl>
or: git remote set-url --delete <name> <url>

Working with remote repositories

$ git clone https://github.com/schacon/ticgit > /dev/null
$ cd ticgit & git remote

origin

$ git remote -v

origin https://github.com/schacon/ticgit (fetch)
origin https://github.com/schacon/ticgit (push)

2 when cloning a repository, it is named origin by default

ﬁ

we can then pull/push the contributions from this repository ‘

with git remote one can manage remote repositories:

list remote repositories

their names, their fetch/push urls,
the tracked branches

the default branch of the remote

2 when cloning a repository, it is named origin by default ‘

j we can then pull/push the contributions from this repository ‘

Working with remote repositories

$ git remote add pb https://github.com/paulboone/ticgit
$ git fetch pb

remote: Counting objects: 43, done.

remote: Compressing objects: 100% (36/36), done.
remote: Total 43 (delta 10), reused 31 (delta 5)
Unpacking objects: 100% (43/43), fait.

From https://github.com/paulboone/ticgit

* [new branch] master -> pb/master

* [new branch] ticgit -> pb/ticgit

$ git push pb ticgit
$ # man: git push <remote> <branch>

$ git push origin branchi:branch2
$ # man: git push <remote> <local-ref>:<remote-ref>

$ git push

git fetch:
Retrieve all information from a remote repository
- the master branch from pb is now pb/master

v No automatic merge, no local modification!

git push:
Push to the remote repository
- ex 1:pushthe ticgit branch to pb
- ex 2: push branchl to the branch2 branch of origin
ex 3: with default values, equivalent to:
git push origin master

A\ There may be conflicts during the merge ! A

Tagging

* git allows you to tag states in the history

Py — 2 list tags

ve.1
v1.3

2 tag the current commit, with a tagging message
$ git tag -a v1.4 -m "Version 1.4"

$ git tag
ve.1
v1.3
vi.4

2 tag a specific commit

$ git tag -a v1.2 9fcebe2

push a tag
$ git push origin v1.2

$ git tag -d vi.4 N
$ git push origin -delete v1.4 deleting a tag

and deletion on the remote server

https//git-scm.com/book/en/v2/Git-Basics-Tagging

Technological foundations of
software development

Manage your source code
Part 3 — Branching and merging with Git — complementary slides

1 1I::
ICM — Computer Science Major — Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems — Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development

Maxime Lefrangois https://maxime-lefrancois.info

online: https://ci.mines-stetienne.fr/cps2/course/tfsd

Tagging

$ git checkout v2.29.2
Note : basculement sur 'v2.29.2°.

You are in the "HEAD detached" state. You can visit,
make experimental modifications and and validate them.
You just need to make another switch to

abandon the commits you make in this state without
impacting the other branches

If you want to create a new branch to keep the commits
you create,
you just use the -c option of the switch command like

in the "detached HEAD" state,
a new commit would not belong to any branch

it would be reachable only with its exact footprint

it is better to create a branch

for example: $ git checkout -b v2.29.X

this: Basculement sur la nouvelle branche 'v2.29.X'
git switch -c <name-of-new-branch>
or undo this operation with :
git switch -
Disable this advice by setting the advice.detachedHead
configuration variable to false
HEAD is now on 898f80736c Git 2.29.2
$ git checkout v2.29.1
HEAD's previous position was on 898f80736c Git 2.29.2
HEAD is now on b927c¢80531 Git 2.29.1
62
https://git-scm.com/book/en/v2/Git-Basics-Tagging.
Creating a new branch and switching to it at the same time
Note It's typical to create a new branch and want to switch to that new branch at the same

time — this can be done in one operation with git checkout -b <newbranchname>.

From Git version 2.23 onwards you can use git switch instead of git checkout to:

« Switch to an existing branch: git switch testing-branch.

Note « Create a new branch and switch to it: git switch -c¢ new-branch.The -c
flag stands for create, you can also use the full flag: --create.

* Return to your previously checked out branch: git switch -.

Branching and merging Branching and merging
Scenario Scenario
1. you are working on a web site;
1. you are working on a web site; m
2. you create a branch for a new article in progress;

3. you start working on this branch.

| At this point, you get a call that a critical problem has been discovered and
— needs to be addressed as soon as possible.
— So you do the following: &0) (il -~ 2

/

. you switch to the production branch;

. you create a branch to add the patch;

. after testing it, you merge the patch branch and push the result to production;
. you switch back to the initial branch and continue your work

B WON -

65

Branching and merging Branching and merging
Scenario Scenario
1. you are working on a web site; 1. you are working on a web site;
2. you create a branch for a new article in progress; 2. you create a branch for a new article in progress;
3. you start working on this branch.
Creation of a new branch iss53 to work Example of a new commit on branch iss53
onissue #53

$ vim index.html

$ git checkout -b iss53 $ git commit -a -m "add footer [issue 53]"

Switched to a new branch "iss53"

co - c1 - c2 & @ls brendh Ao co -~ c1 - 2 - a3
$ git checkout iss53

67

Branching and merging
Scenario

N\ | / At this point, you get a call that a critical problem has been discovered and
__ needs to be addressed as soon as possible.

i}

(===]

co r—a C1 - c2 - G3

69

Branching and merging
Scenario

2. you create a branch to add the patch;

$ git checkout -b patch

Switched to a new branch patch'

$ vim index.html

$ git commit -a -m "incorrect email address”

1 file changed, 2 insertions(+)
ceo e m— Cl - c2 - c4

71

Branching and merging
Scenario

1. you switch to the production branch;

$ git checkout master
Switched to branch 'master’

ce r—s (el - c2 - 3

[correctif 1fb7853] “"incorrect email address"

Branching and merging
Scenario

3. after testing it, you merge the patch branch and push the result to production;

maSter m

hotfix $ git checkout master
$ git merge patch
Updating f42c576..3a0874c
Fast-forward
index.html | 2 ++

o - a @ . 4 1 file changed, 2 insertions(+)

N

c3 Fast-forward: simple déplacement
du pointeur vers I'avant

Branching and merging
Scenario

4. you switch back to the initial branch and continue your work

ce B Gl - c2

$ git checkout iss53

Switched to branch "iss53"

$ vim index.html

$ git commit -a -m ‘New footer finished [issue 53]’
[iss53 ad82d7a] New footer finished [issue 53]

1 file changed, 1 insertion(+)

Switch to branch iss53 and create new commits

Branching and merging

Merging

ce - C1 - c2

$ git checkout master

Switched to branch 'master’

$ git merge iss53

Merge made by the 'recursive' strategy.
README | 1+

1 file changed, 1 insertion(+)

‘recusive’ strategy: Simple 3-sources fusion

c4

3

C4

S

Branching and merging

Merging

$ git branch -d patch
Deleted branch patch (3a@874c).

Delete branch hot

Common
Ancestor

co - C1

master

Snapshot to
Merge Into

- cs $ git checkout master

Switched to branch 'master’

$ git merge iss53

Merge made by the 'recursive' strategy.
README | 1+

1 file changed, 1 insertion(+)

‘recusive’ strategy: Simple 3-sources fusion

- cs5

73
$ git merge iss53
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.
$ git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit")
6 Unmerged paths:
P (use "git add <file>..." to mark resolution)

/ both modified: index. html

no changes added to commit (use "git add" and/or "git commit -a"

Example of a merger conflict to be resolved

75

Snapshot to
Merge In

:

iss53

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

<div id="footer">

please contact us at support@github.com
</div>

>>>>>>> iss53:index.html

- —1

Contents of the index.html file
with conflict markers

Branching and merging
Merge conflicts

<div id="footer">
please contact us at email.support@github.com (:::]

</div>

‘ Example of manual resolution ‘

<

$ git add index.html

‘ We mark this conflict "resolved". ‘
L

$ git status

On branch master

All conflicts fixed but you are still merging.
(use "git commit" to conclude merge)

Changes to be committed: C

modified: index.html

Remote branches

git.ourcompany. con

master

\J

0743 = abbdc = 4265 = 31bge = 190a3

Someone else pushes

My Computer

origin/master

v

0743 = a6bdc = 14265 = a3sde = 893cf

A

<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>

<div id="footer">

please contact us at support@github.com
</div>

>>>>>>> iss53:index.html

$ git commit

‘ We finalize the commit

77

Remote branches

git.ourcompany. con

[]

0b743 = abbsc = 4265

' git clone janedoe@git.ourcompany.com:project.git

My Computer

0b743 <= abb4c = 4265

w Locat branch

‘ Local and remote work may differ

79

Remote branches

$ git push origin issue-53
Counting objects: 24, done.

Compressing objects: 100% (15/15), done.

Writing objects: 100% (24/24), 1.91 KiB | @ bytes/s, done
Total 24 (delta 2), reused @ (delta @)

To https://github.com/schacon/simplegit

* [new branch] issue-53 -> issue-53

Delta compression using up to 8 threads. [

‘ | push my changes on the remote server

The
<remote>/<branch>
branch is unmodifiable.
It is a bookmark to
indicate the state of the
remote branch

$ git fetch origin

remote: Counting objects: 7, done.

remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta @), reused 3 (delta)
Unpacking objects: 100% (3/3), done.

From https://github.com/schacon/simplegit

* [new branch] issue-53 -> origin/issue-53

‘ My colleague retrieves the changes

$ git checkout -b issue-53 origin/issue-53
Branch issue-53 set up to track remote branch issue-53 from origin.
Switched to a new branch 'issue-53'

My colleague creates a modifiable local branch issue-53,
based on the state of origin/issue-53

Remote branches

$ git checkout -b issue-53 origin/issue-53

Branch issue-53 set up to track remote branch issue-53 from origin.

Switched to a new branch 'issue-53*

Create issue-53 that "follows" origin/issue-53
Allows you to push and pull from origin/issue-53 by default

$ git checkout --track origin/issue-53

Branch issue-53 set up to track remote branch issue-53 from origin.

Switched to a new branch 'issue-53'

Shortcut: automatic naming of the created branch

$ git checkout issue-53

Branch issue-53 set up to track remote branch issue-53 from origin.

Switched to a new branch 'issue-53'

Shortcut: if issue-53 does not exist, and exists on a single remote

Remote branches

$ git branch -vv
iss53 7e424c3 [origin/iss53: ahead 2] forgot the brackets
master lae2a45 [origin/master] deploying index fix

* correctionserveur f8674d9 [equipel/correction-serveur-ok: ahead 3, behind 1] this should do it
test 5ead63a trying something new

Visualize the branches and the branches they are configured to follow

$ git pull issue-53

Shortcut for git fetch then git merge

