
Technological foundations of
software development²

Automate build production

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

2

Objectives of the session

This session aims to familiarize you with the methods and tools for
automating code production: compilation, testing, packaging,
deployment, etc. In particular, we will see:
- make
- Apache Maven

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

Technological foundations of
software development

Automate build production

Part 1: « Automate »: What? Why? How?

https://www.commitstrip.com/en/2015/06/22/can-we-automate-everything/?

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

Technological foundations of
software development

Automate build production

Part 1: « Automate »: What? Why? How?

https://www.commitstrip.com/en/2015/06/22/can-we-automate-everything/?

this session
Build Production

5

« Automate »: What ?
• Check the licenses of the files, check that the remote repository has no new commit, ...

• Potentially generate source code

• Download or update dependencies

• Manage additional resources

• Compile sources, optimize code

• Run unit tests

• Generate documentation

• Package executable code

• Deploy in a test environment and execute integration tests

• Verify the integrity of the archive, check the quality of the code, ...

• Deploy in a production environment, publish the code version

• Create and push a git tag

• ...

https://en.wikipedia.org/wiki/Build_automation
6

« Automate »: Why ?

• Accelerate software production
• Improve software quality
• Avoid redundant tasks
• Limit bad software versions
• History: traceability, non-repudiation

• Save time and money

• As a building block for continuous integration and deployment

https://en.wikipedia.org/wiki/Build_automation

7

« Automate »: How ?

• Build automation utilities
• examples: make, rake, msbuild, ant, maven, gradle, webpack, ...
• automate simple and repeatable tasks
• order tasks to achieve goals
• execute only the necessary tasks

• Two paradigms:
• task-oriented: breaks down goals into tasks
• product-oriented: breaks down into sub-products to be generated

https://en.wikipedia.org/wiki/Build_automation
8

« Automate »: How ?

• Build automation servers
• run build automation utilities

• Three paradigms:
• On-demand automation: the user requests the execution of the production
• Scheduled automation: execution is scheduled (e.g. nightly build)
• Triggered automation: execution is triggered by an event (e.g., commit on master)

https://en.wikipedia.org/wiki/Build_automation

Technological foundations of
software development

Automate build production
Part 2: Build automation utilities

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

Technological foundations of
software development

Automate build production
Part 2: Build automation utilities
Part 2.1: Make-like

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

11

Make-like build automation utilities

• macros, declarative programming
• first implementation by Stuart Feldman (Bell Labs, released in 1976)
• many variants of the tool

• make, GNU gmake, Microsoft nmake (in Visual Studio), google Kati (for
Android OS) ...

• still widely used today

https://en.wikipedia.org/wiki/Make_(software)
https://makefiletutorial.com/#makefile-cookbook

12

file makefile (or Makefile, or GNUmakefile, ...)

https://en.wikipedia.org/wiki/Make_(software)
https://makefiletutorial.com/#makefile-cookbook

srcfiles := $(shell echo src/{00..99}.txt)
destfiles := $(patsubst src/%.txt,dest/%.txt,$(srcfiles))

tutorial:
 @echo "10 questions about Isaac's Makefile in the MCQ"

src/%.txt:
 @[-d src] || mkdir src
 echo $* > $@

dest/%.txt: src/%.txt
 @[-d dest] || mkdir dest
 cp $< $@

destination: $(destfiles)

.PHONY: tutorial destination

call with target file names
$ make # calls rule “tutorial”
$ make dest/00.txt # calls third rule, which needs second.
$ make destination # updates all targets

Macros: reusable pieces of text or values that
can be substituted throughout the build

Declarative programming rules
target [target ...]: [component ...]
[Tab] [command 1]↹
…
[Tab] [command n]↹

"tutorial" and "destination" aren’t actual
filename, soe we define them as .PHONY

13

To read for MCQ test

• “Isaac’s Makefile”
https://gist.github.com/isaacs/62a2d1825d04437c6f08 Technological foundations of

software development
Automate build production

Part 1: Build automation utilities
Part 2.2: for Java

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

15

For Java

16

For Java

https://en.wikipedia.org/wiki/Apache_Ant

Apache Ant ("Another Neat Tool")
Apache Software Foundation, v1 2000 ;
written in Java
XML project files, complex, verbose

+ Apache Ivy
Transitive dependency manager
example:

http://ant.apache.org/ivy/

<dependency org="com.google.code.gson" name="gson" rev="2.8.8"/>

http://blog.travelmarx.com/2011/10/java-apache-ant-and-hello-world.html

http://www.jaya.free.fr/ivy/doc/print.html

17

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

https://devopedia.org/convention-over-configuration

Convention over configuration
objective: limit the number of decisions a

 developer has to make.

18

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Conventions for the project structure

Convention over configuration

19

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Conventions for the project structure
• A project is described by an XML file:

le POM (Project Object Model)

Convention over configuration

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html 20

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Conventions for the project structure
• A project is described by an XML file:

le POM (Project Object Model)

Convention over configuration

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

G-A-V
jar (default), war, pom, ...

dependencies
inheritance and multi-modules

configuration ${prop}
plugins used during the build
plugins for reporting

metadata about the projet

config. environnement

21

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Conventions for the project structure
• A project is described by an XML file:

le POM (Project Object Model)
• Standardized life cycle (phases)

Convention over configuration

https://medium.com/@yetanothersoftwareengineer/maven-lifecycle-phases-plugins-and-goals-25d8e33fa22

22

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Conventions for the project structure
• A project is described by an XML file:

le POM (Project Object Model)
• Standardized life cycle (phases)

Convention over configuration

https://medium.com/@yetanothersoftwareengineer/maven-lifecycle-phases-plugins-and-goals-25d8e33fa22

23

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Conventions for the project structure
• A project is described by an XML file:

le POM (Project Object Model)
• Standardized life cycle (phases)
• Convention for plugin goals executed

at each phase of the lifecycle

Convention over configuration

https://webdevdesigner.com/q/maven-lifecycle-vs-phase-vs-plugin-vs-goal-closed-34346/

Example for <packaging>jar</packaging>

24

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

Dependency management
• Use G-A-V coordinates
• concepts:

• repositories: where dependencies are downloaded to
• scope: context of use of the dependency
• transitivity: dependencies of dependencies
• inheritance: inheritance of dependencies from parent project

https://maven.apache.org/pom.html#dependencies

25

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

Dependency management
• Use G-A-V coordinates
• ⚠ dependence on multiple versions of the same artifact?

https://www.baeldung.com/maven-version-collision
26

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

Dependency management
• Use G-A-V coordinates
• ⚠ dependence on multiple versions of the same artifact?
 Flexibility in version numbers :

• [1.0,) : version 1.0 or greater
• (,1.0] : version lower or equal to 1.0
• [1.0,1.2] : between versions 1.0 and 1.2, inclusive
• (,1.2),(1.2,) : all versions except 1.2
• [1.0,2.0) : version greater or equal to 1.0 and lower than 2.0

Other solutions: https://www.baeldung.com/maven-version-collision

27

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

Everything is plugin
• A plugin is a jar that contains a class annotated @Mojo
• <G>:<A>:<V>:<goal>

• example: org.apache.maven.plugins:maven-compiler-plugin:3.8.1:compile

• Convention for plugin goals executed at each phase of the lifecycle
• Configuration of other plugins, ...

• Many plugins already published by Maven https://maven.apache.org/plugins/
• Example: https://maven.apache.org/plugins/maven-deploy-plugin/examples/deploy-ftp.html
• Convention for the phases to which a goal is attached

28

For Java

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

• Execution of a life cycle goal
 Executes all goals associated with all phases ≤ package

• Execution of a specific goal of a specific plugin
 Executes goal effective-pom from plugin help

• Passing parameters (same as in POM <parameters>…</parameters>)
 Executes goal describe from plugin help

$ mvn package

$ mvn help:effective-pom
$ mvn org.apache.maven.plugins:maven-help-plugin:3.2.0:effective-pom

$ mvn help:describe -Dplugin=help –Dminimal

29

For Java

• pointers:
• @fr http://www.jmdoudoux.fr/java/dej/indexavecframes.htm

chapter 93. Maven (except: 93.2, 93.3.6, 93.3.7, 93.3.9
• https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
• https://maven.apache.org/guides/getting-started/index.html

https://en.wikipedia.org/wiki/Apache_Maven

Apache Maven
Apache Software Foundation, v1 2004; v2 2005; v3 2013
written in Java

30

For Java

• Domain specific language (DSL) rather than XML
• DSL based on Groovy, or on Kotlin
• More expressive, concise, flexible, than Ant and Maven

• Acyclic oriented graph of tasks
• execution of tasks in parallel or in sequence
• dependencies between tasks
• incremental production

https://en.wikipedia.org/wiki/Apache_Maven

Apache Gradle
Open Source, 2007
written in Java, Groovy, Kotlin

Convention over configuration

31

pom.xml build.gradle

settings.gradle

32

For Java

• Viewed in details in the course “Web Programming”
• pointers:

• https://docs.gradle.org/current/userguide/what_is_gradle.html
• https://spring.io/guides/gs/gradle/
• https://dev-mind.fr/training/gradle/gradle_en.html

https://en.wikipedia.org/wiki/Apache_Maven

Apache Gradle
Open Source, 2007
written in Java, Groovy, Kotlin

Technological foundations of
software development

Automate build production
Part 1: Build automation utilities
Part 2.3: For node.js / front-end dev

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

34

For node.js / front-end dev

Dependency Managers

https://www.npmjs.com/

• main central repository for js
• package.json - example: https://github.com/angular/angular-cli/blob/master/package.json

https://yarnpkg.com/

• npm + caching (limits downloads) + parallelization

https://www.developerdrive.com/best-build-tools-frontend-development/

35

For node.js / front-end dev

Tasks automation

grunt https://gruntjs.com/

• task automation: minification, linting, testing, ...

gulp https://gulpjs.com/

• grunt + faster (ram vs i/o) + big ecosystem (plugins)

https://www.developerdrive.com/best-build-tools-frontend-development/
36

For node.js / front-end dev

bundling of code and dependencies so that the client downloads only
one js file and one css file

browserify http://browserify.org/

• package the code and the dependencies (require() fonction of Node.js)
• only one js

webpack https://webpack.js.org/

• The solution to recommend today

https://www.developerdrive.com/best-build-tools-frontend-development/

37

For node.js / front-end dev

https://dev.to/strapi/top-5-alternatives-to-webpack-1dll
https://esbuild.github.io/

https://rollupjs.org/

https://parceljs.org/

https://vitejs.dev/

webpack was recommended in 2022.
In 2024 there are these alternatives:

Technological foundations of
software development

Automate build production
Part 1: Build automation utilities
Part 2.4: For python

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

39https://alpopkes.com/posts/python/packaging_tools/ https://dev.to/adamghill/python-package-manager-comparison-1g98 (2023) 40

Example: Poetry

Poetry
dependency management, linting, autoformatting, testing, and publishing in python
https://python-poetry.org/
MIT License - Open source: https://github.com/python-poetry/poetry

• Managing different environments
• Installing python packages
• Environment reproducibility
• Packaging and publishing python packages

$ poetry init / poetry install
$ poetry add "package==version"
$ poetry update
$ poetry run
$ poetry shell - exit

See https://medium.com/edge-analytics/python-best-practices-2934de825fd2

41

Example: Hatch

Hatch
dependency management, linting, autoformatting, testing, and publishing in python
https://hatch.pypa.io/latest/
MIT License - Open source: https://github.com/pypa/hatch

• Standardized build system with reproducible builds by default
• Robust environment management with support for custom scripts and UV
• Configurable Python distribution management
• Test execution with known best practices
• Static analysis with sane defaults
• Built-in Python script runner
• Easy publishing to PyPI or other indices
• Version management
• Best practice project generation
• Responsive CLI, ~2-3x faster than equivalent tools

42

To read for MCQ test

• To read (necessary for questions in the MCQ)
• The pyproject.toml guide

https://packaging.python.org/en/latest/guides/writing-pyproject-toml/
• “An unbiased evaluation of environment management and packaging tools”

https://alpopkes.com/posts/python/packaging_tools/

Technological foundations of
software development

Automate build production

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

44

... Your turn

Complete the TODO section:

https://ci.mines-stetienne.fr/cps2/course/tfsd/course-4.html#_todos

