
Technological foundations of
software development

Document, license, publish, maintain your software

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

2

Objectives of the session

This session aims to familiarize you with the methods and tools for
Document, license, publish, maintain your software.
In particular, we will cover tools for Java, Python, JavaScript.

Technological foundations of
software development

Document, license, publish, maintain your software
Part 1: Documenting your code

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

4

Documenting your code: Why ?

• Explain how the program
works

• Explain how to use the
program

https://www.commitstrip.com/en/2015/06/29/as-the-last-resort/? https://en.wikipedia.org/wiki/Software_documentation

5

Types of documentation

• Requirements - Statements that identify the attributes, capabilities,
characteristics or qualities of a system. It is the basis for what will be or
has been implemented.
• Architecture/Design - An overview of the software. Includes the

relationships with an environment and the construction principles to be
used in the design of software components.
• Technical - Documentation of code, algorithms, interfaces and APIs.
• End User - Manuals for the end user, system administrators, and support

staff.
• Marketing - How to market the product and market demand analysis.

6

Requirements specification document

specification (in software engineering)
“production of a document that can be systematically reviewed,
evaluated, and approved”

software requirements specification (SRS)
“structured collection of the essential requirements [functions,
performance, design constraints and attributes] of the software
and its external interfaces”

see also https://en.wikipedia.org/wiki/Software_requirements_specification

— ISO/IEC TR 19759:2015 Software Engineering Body of Knowledge (SWEBOK)

example organization of a SRS document
source: https://en.wikipedia.org/wiki/Software_requirements_specification

— IEEE 1012-2016 - IEEE Standard for System, Software, and Hardware Verification and Validation

Slide from: Software Engineering, part 1.

7

Architecture/design

— ISO/IEC/IEEE 42010 Systems and software engineering — Architecture description

Software architecture description
the set of practices for expressing, communicating and analysing software architectures
(also called architectural rendering), and the result of applying such practices through a work
product expressing a software architecture

existing languages such as the UML can be used as Architecture description languages for
analysis, design, and implementation of software-based systems as well as for modeling
business and similar processes.

8
https://c4model.com/

9

Technical documentation

10

Technical documentation

https://www.oracle.com/java/technologies/javase/javadoc-tool.html

11https://www.javaguides.net/2018/12/the-javadoc-tags-explained.html
https://www.oracle.com/java/technologies/javase/javadoc-tool.html

12

• generate HTML pages

• generate javadoc jars

https://www.javaguides.net/2018/12/the-javadoc-tags-explained.html
https://www.oracle.com/java/technologies/javase/javadoc-tool.html

13

Python docstrings

https://devguide.python.org/documenting/ 14

Epytext

Python doc conventions

reStructuredText -> used by Sphinx

Google

deprecated

https://devguide.python.org/documenting/

recommended

15

JavaScript documentation: JSDoc

https://en.wikipedia.org/wiki/JSDoc
https://jsdoc.app/ 16

JavaScript documentation: JSDoc

https://en.wikipedia.org/wiki/JSDoc
https://jsdoc.app/

17

Self-documenting code

• Make source code easier to read and
understand

• Minimize the effort required to maintain or
extend legacy systems

• Reduce the need for users and developers of a
system to consult secondary documentation
sources such as code comments or software
manuals

• Facilitate automation through self-contained
knowledge representation

18

Self-documenting code

• Make source code easier to read and
understand

• Minimize the effort required to maintain or
extend legacy systems

• Reduce the need for users and developers of a
system to consult secondary documentation
sources such as code comments or software
manuals

• Facilitate automation through self-contained
knowledge representation

19

Self-documenting code

• Make source code easier to read and
understand

• Minimize the effort required to maintain or
extend legacy systems

• Reduce the need for users and developers of a
system to consult secondary documentation
sources such as code comments or software
manuals

• Facilitate automation through self-contained
knowledge representation

https://www.commitstrip.com/en/2016/07/27/documentation-just-before-vacation/
20

Self-documenting code

1. Move code to function

https://multi-programming.com/blog/self-documenting-code

21

Self-documenting code

2. Expression is replaced with a variable

https://multi-programming.com/blog/self-documenting-code 22

Self-documenting code

3. Class and module interfaces

https://multi-programming.com/blog/self-documenting-code

23

Self-documenting code

4. Group your code

https://multi-programming.com/blog/self-documenting-code 24

Self-documenting code

5. Give another name to the function

https://multi-programming.com/blog/self-documenting-code

Use active verbs like ”send”:Omit to use obscure words:

25

Self-documenting code

6. Give other names to variables

https://multi-programming.com/blog/self-documenting-code

Do not use silly variable names

a, b, c, variable1, other, …

7. Follow the same naming conventions

26

Self-documenting code

8. Avoid utilizing syntax tricks

https://multi-programming.com/blog/self-documenting-code

27

Self-documenting code

9. Use named constants

https://multi-programming.com/blog/self-documenting-code

const BUY_HAPPINESS = 42;

10. Omit boolean flags

28

Documentation for the end user
Diátaxis
A systematic approach to technical documentation authoring.

https://diataxis.fr/

29

Describes how the program is installed and used
• Tutorials: A tutorial is an experience that takes place under the guidance of

a tutor. A tutorial is always learning-oriented.
• How-to guides: How-to guides are directions that guide the reader through

a problem or towards a result. How-to guides are goal-oriented.
• References: Reference guides are technical descriptions of the machinery

and how to operate it. Reference material is information-oriented.
• Explanations: Explanation is a discursive treatment of a subject, that

permits reflection. Explanation is understanding-oriented.

Documentation for the end user
Diátaxis
A systematic approach to technical documentation authoring.

30

To summarize

https://www.sohamkamani.com/blog/how-to-write-good-documentation/

31

Case study 1

https://pandas.pydata.org/docs/ 32

Case study 2

https://docs.espressif.com/projects/esp-idf/

33

The README file

• A description of what the project is for.
• What is this repo or project? (You can reuse the repo description you used earlier because

this section doesn’t have to be long.)
• How does it work?
• Who will use this repo or project?
• What is the goal of this project?

• Instructions for how to develop, use, and test the code.
• Instructions for how people can help.
• List the licensing information for your project.

• List the contact information for your team as well as where to ask questions.
see https://github.com/18F/open-source-guide/blob/18f-pages/pages/making-readmes-readable.md

34

To read for MCQ test

• The Diátaxis systematic approach to creating better documentation:
• Tutorials
• How-to guides
• Reference
• Explanation

Technological foundations of
software development

Document, license, publish, maintain your software
Part 2: Software licenses

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

36

Creative Commons

• Set of licenses for published works

https://researchoutreach.org/articles/thought-leaders/license-to-share-how-the-creative-commons-licensing-syste
m-encourages-the-remixing-and-reuse-of-published-materials/

37https://researchoutreach.org/articles/thought-leaders/license-to-share-how-the-creative-commons-licensing-syste
m-encourages-the-remixing-and-reuse-of-published-materials/

38

Software license

Contract by which the owner of the copyright on a computer program
defines with his co-contractor (operator or user) the conditions under
which this program can be used, distributed or modified.

39

Software license

40

Free software foundation

(GNU project)

41

Open Source licenses

Open source licenses are licenses that comply with the Open Source
Definition https://opensource.org/osd
— in brief, they allow software to be freely used, modified, and shared.

Apache License 2.0
BSD 3-Clause "New" or "Revised" license
BSD 2-Clause "Simplified" or "FreeBSD" license
GNU General Public License (GPL)
GNU Library or "Lesser" General Public License (LGPL)
MIT license

Mozilla Public License 2.0
Common Development and Distribution License
Eclipse Public License version 2.0
...

42

FOSS Licenses (free and open-source software)

https://moqod-software.medium.com/understanding-open-source-and-free-software-licensing-c0fa600106c9

43

Licensing a repository

https://choosealicense.com/ 44

Display the license in your Git repository

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository

Technological foundations of
software development

Document, license, publish, maintain your software
Part 3: Publish your software

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

46

Publish your software

Software publishing is a term that describes the overall process of
designing and distributing a software package or collection of software
packages.

https://www.computerhope.com/jargon/s/softpubl.htm

47

Package repositories

example with Maven: in the pom.xml example with Maven: in the ~/.m2/settings.xml

- Guide to start publishing your code:
https://central.sonatype.org/publish/publish-guide/
- sign up
- generate artifacts: binaries, source, javadoc
- sign your artifacts (GPG)
- publish : > mvn clean deploy nexus-staging:release

48

Package repositories

- Guide to start publishing your code:
https://packaging.python.org/en/latest/tutorials/packaging-projects/

49

Publish on github/gitlab

• https://docs.github.com/en/repositories/releasing-projects-on-github
/managing-releases-in-a-repository

50

Researchers: get a DOI with Zenodo

• Digital Object Identifiers
(DOIs)
• For academics, you can now

publish your software (or
data) and obtain a
permanent identifier so that
it can be cited in scientific
publications

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content

51

Software archives

Technological foundations of
software development

Document, license, publish, maintain your software
Part 4: Maintaining your software

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

53

Maintain your software
and get the most out of your users 54

- Issues
- Branches
- Milestones
- Project boards
- ...

Technological foundations of
software development

Document, license, publish, maintain your software

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

56

... Your turn

Complete the TODO section:

https://ci.mines-stetienne.fr/cps2/course/tfsd/course-6.html#_todos

