
Technological foundations of
software development

Integrate and deploy your software continuously

ICM – Computer Science Major – Course unit on Technological foundations of computer science
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

2

Objectives of the session

This session is designed to get you familiar with methods and tools for
continuous software integration and deployment.
In particular, we will cover Gitlab CI/CD, and Github Actions

Technological foundations of
software development

Integrate and deploy your software continuously
Part 1: DevOps

ICM – Computer Science Major – Course unit on Technological foundations of computer scienceopment
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

4

DevOps
DevOps is a set of practices that combines software development (Dev) and IT operations (Ops). It
aims to shorten the systems development life cycle and provide continuous delivery with high
software quality. DevOps is complementary with Agile software development; several DevOps
aspects came from the Agile methodology. — Contributors, Wikipedia https://en.wikipedia.org/wiki/DevOps

There are many variants https://theagileadmin.com/what-is-devops/

5

Agile vs DevOps

Source: https://www.guru99.com/agile-vs-devops.html

• DevOps is a practice of bringing development and operations teams together whereas Agile is an iterative approach that focuses on
collaboration, customer feedback and small rapid releases.

• DevOps focuses on constant testing and delivery while the Agile process focuses on constant changes.
• DevOps requires relatively a large team while Agile requires a small team.
• DevOps leverages both shifts left and right principles, on the other hand, Agile leverage shift-left principle.
• The target area of Agile is Software development whereas the Target area of DevOps is to give end-to-end business solutions and fast delivery.
• DevOps focuses more on operational and business readiness whereas Agile focuses on functional and non-function readiness.

6
https://s32860.pcdn.co/wp-content/uploads/2019/11/devops-hero-1-87966cfbc9c5713ae047551c7b22985c.png

7

Definitions

https://docs.gitlab.com/ee/ci/introduction/

Continuous Integration
for every change submitted to an application - even to development branches - it’s built and
tested automatically and continuously, ensuring the introduced changes pass all tests,
guidelines, and code compliance standards you established for your app.

Continuous Delivery
not only built and tested at every code change pushed to the codebase, but, as an additional
step, it’s also deployed continuously, though the deployments are triggered manually

Continuous Deployment
instead of deploying your application manually, you set it to be deployed automatically. It does
not require human intervention at all to have your application deployed

8
https://docs.gitlab.com/ee/ci/introduction/

Many tools for CI/CD …

Circle CI
2011
https://circleci.com/
YAML

Travis CI
2011
http://travis-ci.com/
YAML

GitLab CI/CD
2013
https://gitlab.com/
YAML

Jenkins
2011
https://jenkins.io/
Groovy

GitHub Actions
2018
https://github.com/
features/actions
YAML

… and others

… all supporting Docker (2013)

Circle CI
2011
https://circleci.com/
YAML
Supports Docker

Travis CI
2011
http://travis-ci.com/
YAML
Supports Docker

GitLab CI/CD
2013
https://gitlab.com/
YAML
Supports Docker

Jenkins
2011
https://jenkins.io/
Groovy
Supports Docker

GitHub Actions
2018
https://github.com/
features/actions
YAML
Supports Docker

Technological foundations of
software development

Intégrer et déployer son logiciel en continue
Part 2: Gitlab CI/CD

ICM – Computer Science Major – Course unit on Technological foundations of computer scienceopment
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

14

Pipelines

Pipelin
e

Jo
b

Stag
e

https://docs.gitlab.com/ee/ci/introduction/

15

Pipelines

Stage
sBy default:
- Build
- Test
- Deploy

16

Pipelines

Stage
sBy default:
- Build
- Test
- Deploy

Job
sYAML key names

17

Env variables

Variable
s• At the project level
• Group level
• By default

https://docs.gitlab.com/
ee/ci/variables/predefin
ed_variables.html

https://docs.gitlab.com/ee/ci/variables/README.html 18

Environments

https://docs.gitlab.com/ee/ci/environments/index.html

19

Configuration of the pipeline execution
• Scheduled execution

• Configuration in the .gitlab-ci.yml file

• Configuration for a Job
• tags: to choose the “runner”
• stage: in which stage the job is run
• variables: define job variables on a job level.
• dependencies: list of jobs whose artifacts will be used
• when: When to run job. Also available: when:manual and when:delayed.
• allow_failure: false (by default), true
• script: the shell script(s) to execute.

• only: limit when jobs are created. Also available: only:refs, only:kubernetes, only:variables, and only:changes.
• except: limit when jobs are not created. Also available: except:refs, except:kubernetes, except:variables, and except:changes.
• image: docker image to use name:tag
• services: use Docker services images. Also available: services:name, services:alias, services:entrypoint, and services:command.

https://docs.gitlab.com/ee/ci/yaml/ 20

Configuration of the pipeline execution
• Scheduled execution

• Configuration in the .gitlab-ci.yml file

• Configuration for a Job
• only: limit when jobs are created. Also available: only:refs, only:kubernetes, only:variables, and only:changes.
• except: limit when jobs are not created. Also available: except:refs, except:kubernetes, except:variables, and except:changes.

https://docs.gitlab.com/ee/ci/yaml/

21

Configuration of the pipeline execution
• Scheduled execution

• Configuration in the .gitlab-ci.yml file

• Configuration for a Job
• only: limit when jobs are created. Also available: only:refs, only:kubernetes, only:variables, and only:changes.
• except: limit when jobs are not created. Also available: except:refs, except:kubernetes, except:variables, and except:changes.

https://docs.gitlab.com/ee/ci/yaml/ 22

Configuration of the pipeline execution
• Scheduled execution

• Configuration in the .gitlab-ci.yml file

• Configuration for a Job
• image: docker image to use name:tag
• services: use Docker services images. Also available: services:name, services:alias, services:entrypoint, and services:command.

https://docs.gitlab.com/ee/ci/yaml/

23

Configuration de l’exécution du pipeline
• Scheduled execution

• Configuration in the .gitlab-ci.yml file

• Configuration for a Job
• before_script
• after_script
• cache: List of files that should be cached between subsequent runs. Also available: cache:paths, cache:key, cache:untracked, cache:when, and

cache:policy.
• variables
• image: defines the default image
• services : defines the default services

https://docs.gitlab.com/ee/ci/yaml/ 24

Artifact
sArchive available on success.

Configuration (sub-list):
artifacts:paths,
artifacts:exclude,
artifacts:expose_as,
artifacts:name,
artifacts:untracked,
artifacts:when,
artifacts:expire_in, and
artifacts:reports.

Job artifacts: Output, use, and reuse job artifacts.

https://docs.gitlab.com/ee/ci/pipelines/job_artifacts.html

25

Example

https://saref.etsi.org/sources/saref4lift/ 26

Example

https://saref.etsi.org/sources/saref4lift/

27

Example

https://saref.etsi.org/sources/saref4lift/

Technological foundations of
software development

Integrate and deploy your software continuously
Part 3: GitHub Actions

ICM – Computer Science Major – Course unit on Technological foundations of computer scienceopment
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

GitHub Actions: GitHub's response

Circle CI
2011
https://circleci.com/
YAML
Supports Docker

Travis CI
2011
http://travis-ci.com/
YAML
Supports Docker

GitLab CI/CD
2013
https://gitlab.com/
YAML
Supports Docker

Jenkins
2011
https://jenkins.io/
Groovy
Supports Docker

GitHub Actions
2018
https://github.com/
features/actions
YAML
Supports Docker

30

31

Find actions

32

Example

https://github.com/HyperAgents/ns.hyperagents.org/

33

Example

https://github.com/HyperAgents/ns.hyperagents.org/ 34

Example

https://github.com/HyperAgents/ns.hyperagents.org/

Technological foundations of
software development

Integrate and deploy your software continuously

ICM – Computer Science Major – Course unit on Technological foundations of computer scienceopment
M1 Cyber Physical and Social Systems – Course unit on CPS2 engineering and development, Part 2: Technological foundations of software development
Maxime Lefrançois https://maxime-lefrancois.info
online: https://ci.mines-stetienne.fr/cps2/course/tfsd/

36

... Your turn

Complete the TODO section:

https://ci.mines-stetienne.fr/cps2/course/tfsd/course-8.html#_todos

