
Virtualization – VMs and Containers

Luis Gustavo Nardin
gnardin@emse.fr

Cloud and Edge Infrastructures

November 9, 2025

mailto:


1/36

Cloud Computing Overview



2/36

Outline

Virtualization

Virtual Machines

Containers



3/36

Virtualization



4/36

Virtualization
▶ Create a virtual version of something

Hardware, Network, Storage, Operating System, Application

▶ The construction of an isomorphism between a guest system and a host

(Popek & Goldberg, 1974)



5/36

Virtualization

▶ Virtual Machine Monitor (VMM) is the software that provides the
abstraction of a virtual machine

▶ VMM’s essential characteristics are
Equivalence / Fidelity
✓ Provide an environment for programs which is essentially identical with the

original physical machine
Resource Control / Safety
✓ Complete control of system resources

Efficiency / Performance
✓ Programs running in this environment show at worst only minor decrease in

speed

(Popek & Goldberg, 1974)



6/36

Example: Virtual Disk

▶ Partition a single hard disk to multiple virtual disks
▶ Virtual disk has virtual tracks & sectors
▶ Implement virtual disk by file
▶ Map between virtual disk and real disk contents
▶ Virtual disk write/read mapped to file write/read in

host system

(Smith & Nair, 2005)



7/36

Interface Abstraction Levels

(Smith & Nair, 2005)



8/36

Virtualization at Various Abstraction Levels

(Hwang, 2017)



9/36

Virtual Machines



10/36

Virtual Machines
▶ Virtual Machine (VM): an efficient, isolated duplicate of the real

machine
▶ VMs run on top of a physical machine using a Hypervisor
▶ Hypervisor: a tool that controls and distributes the computing resources to

each VM
▶ Roles of the hypervisor

Provide control of the processor and the resources of the host machine
Allocate to each virtual machine the resources requested
Make sure that VMs do not interfere with each other

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



11/36

VM Advantages
▶ Cost-Effectiveness – Less Hardware

Multiple virtual machines / operating systems / services on single physical
machine (server consolidation)
Various forms of computation as a service

▶ Isolation
Good for security
Great for reliability and recovery: If VM crashes it can be rebooted, does not
affect other services (fault containment)
VM migration

▶ Development Tool
Work on multiple OS in parallel
Develop and debug OS in user mode
Origins of VMware as a tool for developers

(Hennessy & Patterson, 2019)



12/36

Bare Metal Hypervisor (Type I)

▶ A bare metal hypervisor is directly executed on the hardware
Interface directly with the underlying hardware
Do not need a host OS to run on

+ Better performance, scalability, and
stability

- Hardware compatibility limited

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



13/36

Host Metal Hypervisor (Type II)

▶ A hosted virtualization hypervisor runs on the OS of the hosting computer
A computer running OSX can have a VM running Windows
The VM does not have direct access to hardware, so it has to go through the
host operating system

+ More hardware compatibility

- Lower performance

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



14/36

Hypervisors Type I and Type II

(Hwang, 2017)



15/36

Full Virtualization vs. Paravirtualization
Full Virtualization
▶ Do not modify the guest OS, and

critical instructions are
emulated by software through the
use of binary translation

▶ Binary translation slows down
the performance considerably

Paravirtualization
▶ Modify the guest OS, and

non-virtualizable instructions are
replaced by hypercalls that
communicate directly with the
hypervisor or VMM

▶ Reduce the overhead, but the
cost of maintaining
para-virtualized OS is high



16/36

Examples Bare Metal Hypervisors

▶ VMware ESXi
Mature and stable tool
Small disk footprint size
Memory ballooning
Include its own kernel
Free edition with limited features

(Fayyad-Kazan et al., 2013)



17/36

Examples Bare Metal Hypervisors

▶ Microsoft Hyper-V
Good for Small-Medium Business
Simple live migrations
Good for running Windows
Free edition with limited features

NOTE: Microsoft is ending mainstream support of Hyper-V Server 2019 on January 9, 2024 and extended support will end on

January 9, 2029. Hyper-V Server 2019 will be the last version of this product and Microsoft is encouraging customers to

transition to Azure Stack HCI.

(Fayyad-Kazan et al., 2013)



18/36

Examples Bare Metal Hypervisors

▶ Xen Project
Mature and stable tool
Open source
Micro-kernel hypervisor
(Modular)
OS directly accesses physical
devices
Domain 0 implements access
policies

(Fayyad-Kazan et al., 2013)



19/36

Examples Host Metal Hypervisors
▶ VMware Workstation

Pro/Player
Support multiple different OS
Good for labs and
demonstrations
VMware Workstation Player free

▶ Oracle VM VirtualBox
Mature and stable tool
Open source
Suitable for SME
Support multiple OS



20/36

Examples Host Metal Hypervisors
▶ KVM

Open source
Integrated to Linux Kernel
Support wide variety of hardware
Live migration

▶ Parallels
Mature and stable tool
Run on MacOS (Intel and ARM
processors)
Support multiple OS
Good for running Windows on
MacOS



21/36

How to choose a hypervisor?

▶ Understand your needs, i.e., flexibility, scalability, reliable support, etc.
▶ Understand the features, i.e., live migration, storage migration, dynamic

memory, etc.
▶ Investigate the ecosystem

Possible to evaluate every virtualization hypervisor for free

▶ Compare costs

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



22/36

Containers



23/36

Containers

▶ Containers provide an operating system level virtualization
▶ An abstraction layer between traditional OS and user applications
▶ Main difference: Containers share the host OS kernel with other

containers

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



24/36

Containers

Advantages
▶ Minimal startup/shutdown cost
▶ Small footprint
▶ High scalability

Disadvantages
▶ All containers must use the same

OS
▶ Poor application isolation

Similarities with VMs
▶ They have private space for processing
▶ They can execute commands as superuser
▶ They have a private network interface and IP address
▶ They can mount filesystems



25/36

Hypervisors vs. Containers

Hypervisors
▶ Allow an OS to run independently

from the underlying hardware
through the use of virtual machines

▶ Share virtual computing, storage
and memory resources

▶ Can run multiple operating
systems

Containers
▶ Allow applications to run in

separate divisions of the Host OS
▶ Can run on different OS, all they

need is a container engine to run
▶ Extremely portable since in a

container, an application has
everything it needs to run



26/36

What is Docker?

Docker is an open-source project that
automates the deployment of applications
inside software containers, by providing
an additional layer of abstraction and
automation of operating system–level
virtualization on Linux

Source: https://en.wikipedia.org/wiki/Docker_(software)

https://en.wikipedia.org/wiki/Docker_(software)


27/36

Why Docker?

▶ Ease of use
can quickly build and test portable applications
allow anyone to package an application on their laptop
build once, run anywhere

▶ Speed: lightweight and fast
use fewer resources
no need to boot up a full virtual OS every time

▶ Docker Hub: an increasingly rich ecosystem
an App store for Docker images
public images created by the community

▶ Modularity and Scalability
easy to link containers together to create an app
easy to scale or update components independently in the future



28/36

Docker Technology

▶ libcontainer: A native Go
implementation for creating
containers with namespaces,
cgroups, capabilities, and
filesystem access controls

▶ libvirt: Manage platform
virtualization

▶ LXC (LinuX Containers): Multiple
isolated Linux systems (containers)
on a single host

▶ systemd-nspawn: Fully virtualizes
the file system hierarchy

Source: https://en.wikipedia.org/wiki/Docker_(software)

https://en.wikipedia.org/wiki/Docker_(software)


29/36

Docker Architecture Overview



30/36

Docker Architecture Overview

▶ Docker engine: Layer on which Docker runs
Docker Daemon runs in the host computer
Docker Client communicates with the Docker Daemon to execute
commands

▶ Dockerfile: Instructions to build a Docker image
▶ Docker Image: Read-only templates built from a set of instructions written

in your Dockerfile



31/36

Kubernetes Overview

▶ What if I want to run multiple containers across multiple machines?
Need to start the right containers at the right time
Figure out how they can talk to each other
Handle storage considerations
Deal with failed containers or hardware

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



32/36

Kubernetes Overview

▶ Open source container orchestration platform
Run containers across many different machines
Scale up or down by adding or removing containers when demand changes
Keep storage consistent with multiple instances of an application
Distribute load among containers
Launch new containers on different machines if something fails

Based on slides of Charlotte Laclau – Télécom Saint-Étienne



33/36

Kubernetes Architecture

Source: https://kubernetes.io/

https://kubernetes.io/


34/36

Kubernetes Control Panel Concepts

kube-apiserver The API server that exposes the Kubernetes API.

etcd Consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data.

kube-scheduler Watch for newly created Pods with no assigned node, and
selects a node for them to run on.

kube-controller-manager Component that runs controller processes
Node Responsible for noticing and responding when nodes go down.
Job Watches for Job objects that represent one-off tasks, then creates Pods to run

those tasks to completion.
EndpointSlice Populates EndpointSlice objects (to provide a link between Services

and Pods).
ServiceAccount Create default ServiceAccounts for new namespaces.

cloud-controller-manager Embed cloud-specific control logic.



35/36

Kubernetes Control Panel Concepts

kubelet An agent that runs on each node in the cluster. It makes sure that
containers are running in a Pod.

kube-proxy kube-proxy maintains network rules on nodes. These network
rules allow network communication to your Pods from network sessions
inside or outside of your cluster.

Container runtime A fundamental component that empowers Kubernetes to
run containers effectively. It is responsible for managing the execution and
lifecycle of containers within the Kubernetes environment.



36/36

References
▶ Fayyad-Kazan, H., Perneel, L. & Timmerman, M. (2013). Benchmarking the Performance of Microsoft Hyper-V

server, VMware ESXi and Xen Hypervisors. Journal of Emerging Trends in Computing and Information Systems,
4(12), pp. 922-933.

▶ Hennessy, J. & Patterson, D. (2019). Computer Architecture: AQuantitative Approach. (6th ed.). Amsterdam:
Morgan Kaufmann.

▶ Hwang, K. (2017). Cloud Computing for Machine Learning and Cognitive Applications. Cambridge, MA: The MIT
Press.

▶ Popek, G. & Goldberg, R. P. (1974). Formal Requirements for Virtualizable Third Generation Architectures.
Communications of the ACM. 17(7), pp. 412-421. DOI: 10.1145/361011.361073.

▶ Smith, J. E. & Nair, R. (2005). Virtual Machines. San Francisco, CA: Morgan Kaufmann.


	Virtualization
	Virtual Machines
	Containers

