Z

MINES
Saint-Etienne

4 nd

Institut M

Virtualization — VMs and Containers

Luis Gustavo Nardin
gnardin@emse.fr

Cloud and Edge Infrastructures

November 9, 2025
©

mailto:

Cloud Computing Overview

Private Public

_— .
Hybrid
22 ment
elivery / '

O~ Model

Reducn
laaS
= Cloud i
Computing Benefits
‘ oy Do
Roles use
Features
Users ;
od Vmuallzatlon
Providers
Elasticity

1/36

Outline

Virtualization

Virtual Machines

Containers

2/36

3/36

Virtualization

» Create a virtual version of something
m Hardware, Network, Storage, Operating System, Application
» The construction of an isomorphism between a guest system and a host

c <y

is)

(Popek & Goldberg, 1974)

Virtualization

» Virtual Machine Monitor (VMM) is the software that provides the
abstraction of a virtual machine

» VMM’s essential characteristics are
m Equivalence / Fidelity

v" Provide an environment for programs which is essentially identical with the
original physical machine
m Resource Control / Safety
v/ Complete control of system resources
m Efficiency / Performance

v Programs running in this environment show at worst only minor decrease in
speed

(Popek & Goldberg, 1974)

Example: Virtual Disk

vyvyYvyVvyy

Partition a single hard disk to multiple virtual disks
Virtual disk has virtual tracks & sectors

Implement virtual disk by file

Map between virtual disk and real disk contents

Virtual disk write/read mapped to file write/read in
host system

(Smith & Nair, 2005)

6/36

Interface Abstraction Levels

@
Application
Programs
Libraries
3 3 Software
Operating System
oG
. Memory
Drivers Manager Scheduler
———@®— 1A
Execution Hardware
> 10 Memory
Translation
System Interconnect
(bus)
17 17 12 Hardware
Controllers Controllers
13 14
1/O Devices Main
and Memol
Networking t

Figure 1.4 Computer System Architectures. Implementation layers communicate vertically via the shown
interfaces. This view of architecture is styled after one given by Glenford Myers (1982).

(Smith & Nair, 2005)

7/36

Virtualization at Various Abstraction Levels

Level of
Abstraction

Instruction Set
Architecture

Hardware-Level
Virtualization

Operation
System Level

Run-Time Library
Level

User Application
Level

Functional Description

Emulation of a guest ISA
by the host ISA

Virtualization on top of
bare metal hardware

Isolated containers as OS
instances

Creating VM via run-time
library through API hooks

Deploy HLL VMs at user
application level

Example
Packages

Dynamo, Bird,
Bochs, Crusoe

XEN, VMWare,
Virtual PC

Docker Engine,
Jail, FVM

Wine, cCUDA,
WABI, LXxRun

JVM, .NET CLR,
Panot

Relative Merits, Appl.
Flexibility/lsolation, and
Implementation Complexity

Very low performance, high app
flexibility, and median complexity
and isolation

High performance and complexity,
median app flexibility, and good
app isolation

Highest performance, low app
flexibility and isolation, and
average complexity

Average performance, low app
flexibility and isolation, and low
complexity

Low performance and app
flexibility, very high complexity
and app isolation

(Hwang, 2017)

8/36

9/36

Virtual Machines

» Virtual Machine (VM): an efficient, isolated duplicate of the real
machine

v

VMs run on top of a physical machine using a Hypervisor

» Hypervisor: a tool that controls and distributes the computing resources to
each VM

» Roles of the hypervisor

m Provide control of the processor and the resources of the host machine
m Allocate to each virtual machine the resources requested
m Make sure that VMs do not interfere with each other

Virtual Machine Monitor

s o

Jirbualizol (VMM, Hypetvisor)

Hardware

Based on slides of Charlotte Laclau — Télécom Saint-Etienne
10/36

VM Advantages

» Cost-Effectiveness — Less Hardware
m Multiple virtual machines / operating systems / services on single physical
machine (server consolidation)
m Various forms of computation as a service
» Isolation

m Good for security
m Great for reliability and recovery: If VM crashes it can be rebooted, does not

affect other services (fault containment)
® VM migration
» Development Tool

m Work on multiple OS in parallel
m Develop and debug OS in user mode
m Origins of VMware as a tool for developers

(Hennessy & Patterson, 2019)

Bare Metal Hypervisor (Type I)

» A bare metal hypervisor is directly executed on the hardware

m Interface directly with the underlying hardware
m Do not need a host OS to run on

s Aibs !wmm!mm ’} + Better performance, scalability, and

Guest 05 | Goest O3 s 02 stability

- Hardware compatibility limited

Based on slides of Charlotte Laclau — Télécom Saint-Etienne

12/36

Host Metal Hypervisor (Type Il)

» A hosted virtualization hypervisor runs on the OS of the hosting computer

m A computer running OSX can have a VM running Windows
m The VM does not have direct access to hardware, so it has to go through the
host operating system

Gt 03 | Guest 05 | Guest 05 + More hardware compatibility

Hypervisor - Lower performance

Based on slides of Charlotte Laclau — Télécom Saint-Etienne

13/36

Hypervisors Type | and Type Il

Excel Word Mplayer Emacs

Windows

Type 1 hypervisor

Guest OS process

Hardware

(@)

(CPU, disk, network, interrupt~ ~fc.)

(e.g., Linux)

Hardware
(CPU, disk, network, interrupts, etc.)

Host OS
process

(b)

(Hwang, 2017)

14/36

Full Virtualization vs. Paravirtualization

Full Virtualization Paravirtualization
» Do not modify the guest OS, and » Modify the guest OS, and
critical instructions are non-virtualizable instructions are
emulated by software through the replaced by hypercalls that
use of binary translation communicate directly with the

» Binary translation slows down hypervisor or VMM

the performance considerably » Reduce the overhead, but the
cost of maintaining
para-virtualized OS is high

-

Examples Bare Metal Hypervisors

» VMware ESXi

Mature and stable tool

Small disk footprint size
Memory ballooning

Include its own kernel

Free edition with limited features

(Fayyad-Kazan et al., 2013)

16/36

Examples Bare Metal Hypervisors

Child Partition

» Microsoft Hyper-V

m Good for Small-Medium Business
m Simple live migrations

m Good for running Windows

m Free edition with limited features

L]
i
1
i
L Applications
1
'
1

NOTE: Microsoft is ending mainstream support of Hyper-V Server 2019 on January 9, 2024 and extended support will end on
January 9, 2029. Hyper-V Server 2019 will be the last version of this product and Microsoft is encouraging customers to
transition to Azure Stack HCI.

(Fayyad-Kazan et al., 2013)

17/36

Examples Bare Metal Hypervisors

» Xen Project

Mature and stable tool

Open source

Micro-kernel hypervisor
(Modular)

OS directly accesses physical
devices

Domain 0 implements access
policies

Domaind VM

PVM

HVM

Deviee Mansger
Contiol Soffware

Unimodified
Tsir Applicarion:

Unimodified
Uit Applications

XenLinux

05 Kernel (Mol fied)

Back-end Driver

Front-end Driver

| metwark | | Biock De |

| eemunis | | Biock Dev |

Native Duiver

05 Kernel
{Unmodified)

Front-emd
Driver

Interface

Safe Hardware Combrel
Tmterface

Event
Channel

Virtual CFU | | Virtwal AU |

Xen Hyperviser (VMM)

I Hardware (MMU, physical memory, Ethemet, SCSI/IDE)]

(Fayyad-Kazan et al., 2013)

18/36

Examples Host Metal Hypervisors

» VMware Workstation
Pro/Player
m Support multiple different OS
m Good for labs and
demonstrations
m VMware Workstation Player free

» Oracle VM VirtualBox

Mature and stable tool
Open source

Suitable for SME
Support multiple OS

®

VMware Player

19/36

Examples Host Metal Hypervisors

> KVM

m Open source i VM
Integrated to Linux Kernel :,-}»\K

|
m Support wide variety of hardware
m Live migration

» Parallels

m Mature and stable tool

m Run on MacOS (Intel and ARM
processors)

m Support multiple OS

m Good for running Windows on
MacOS

|| Parallels’

20/36

How to choose a hypervisor?

» Understand your needs, i.e., flexibility, scalability, reliable support, etc.

» Understand the features, i.e., live migration, storage migration, dynamic
memory, etc.

» Investigate the ecosystem
m Possible to evaluate every virtualization hypervisor for free

» Compare costs

Based on slides of Charlotte Laclau — Télécom Saint-Etienne

22/36

Containers

» Containers provide an operating system level virtualization
» An abstraction layer between traditional OS and user applications

» Main difference: Containers share the host OS kernel with other

containers
— d— /} Container

Application

H,fm'vi.sor

Server

Based on slides of Charlotte Laclau — Télécom Saint-Etienne

23/36

Containers

Advantages Disadvantages
» Minimal startup/shutdown cost » All containers must use the same
» Small footprint (o8
» High scalability » Poor application isolation

Similarities with VMs
» They have private space for processing
» They can execute commands as superuser
» They have a private network interface and IP address

» They can mount filesystems

Hypervisors vs. Containers

Hypervisors

» Allow an OS to run independently
from the underlying hardware
through the use of virtual machines

» Share virtual computing, storage
and memory resources

» Can run multiple operating
systems

Containers
» Allow applications to run in
separate divisions of the Host OS
» Can run on different OS, all they
need is a container engine to run

» Extremely portable since in a
container, an application has
everything it needs to run

What is Docker?

Docker is an open-source project that
automates the deployment of applications
inside software containers, by providing
an additional layer of abstraction and
automation of operating system-level
virtualization on Linux

docker

Source: https://en.wikipedia.org/wiki/Docker_(software)

26/36

https://en.wikipedia.org/wiki/Docker_(software)

Why Docker?

» Ease of use
m can quickly build and test portable applications
m allow anyone to package an application on their laptop
m build once, run anywhere
» Speed: lightweight and fast
m use fewer resources
m no need to boot up a full virtual OS every time
» Docker Hub: an increasingly rich ecosystem
m an App store for Docker images
m public images created by the community
» Modularity and Scalability

m easy to link containers together to create an app
m easy to scale or update components independently in the future

Docker Technology

» libcontainer: A native Go
implementation for creating Docker
containers with namespaces, libcontainer |
cgroups, capabilities, and v v v
filesystem access controls { libvirt][Lxc M S
» libvirt: Manage platform
virtualization v v v v
» LXC (LinuX Containers): Multiple Linux kernel
isolated Linux systems (containers) COroups namespaces Netlink
on a single host SELinux ST
» systemd-nspawn: Fully virtualizes capabilities AppArmor

the file system hierarchy

Source: https://en.wikipedia.org/wiki/Docker_(software)

28/36

https://en.wikipedia.org/wiki/Docker_(software)

Docker Architecture Overview

DOCKER_HOST @)—-&
docker build .-{--- Docker daemon |
<) '... ~ - |
AN
\
/ "

i

M

0z

<
! \
» I ° ~
docker pull j| [Containers \.\ Images J—

docker run —| NGiNX

000¢
h

29/36

Docker Architecture Overview

» Docker engine: Layer on which Docker runs

m Docker Daemon runs in the host computer
m Docker Client communicates with the Docker Daemon to execute
commands

» Dockerfile: Instructions to build a Docker image

» Docker Image: Read-only templates built from a set of instructions written
in your Dockerfile

Kubernetes Overview

» What if | want to run multiple containers across multiple machines?

Need to start the right containers at the right time

Figure out how they can talk to each other
Handle storage considerations
Deal with failed containers or hardware

Based on slides of Charlotte Laclau -~ Télécom Saint-Etienne

Kubernetes Overview

» Open source container orchestration platform

Run containers across many different machines

Scale up or down by adding or removing containers when demand changes
Keep storage consistent with multiple instances of an application
Distribute load among containers

Launch new containers on different machines if something fails

Based on slides of Charlotte Laclau - Télécom Saint-Etienne

Kubernetes Architecture

CONTROL PLANE

CLUSTER

CLOUD PROVIDER API

cloud-controller-manager

Node |

ube-scheduer laube-contrller manager

Kube-proxy

Source: https://kubernetes.io/

33/36

https://kubernetes.io/

Kubernetes Control Panel Concepts

kube-apiserver The APl server that exposes the Kubernetes API.

etcd Consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data.

kube-scheduler Watch for newly created Pods with no assigned node, and
selects a node for them to run on.
kube-controller-manager Component that runs controller processes

Node Responsible for noticing and responding when nodes go down.

Job Watches for Job objects that represent one-off tasks, then creates Pods to run
those tasks to completion.

EndpointSlice Populates EndpointSlice objects (to provide a link between Services
and Pods).

ServiceAccount Create default ServiceAccounts for new namespaces.

cloud-controller-manager Embed cloud-specific control logic.

34/36

Kubernetes Control Panel Concepts

kubelet An agent that runs on each node in the cluster. It makes sure that
containers are running in a Pod.

kube-proxy kube-proxy maintains network rules on nodes. These network
rules allow network communication to your Pods from network sessions
inside or outside of your cluster.

Container runtime A fundamental component that empowers Kubernetes to
run containers effectively. It is responsible for managing the execution and
lifecycle of containers within the Kubernetes environment.

References

>

Fayyad-Kazan, H., Perneel, L. & Timmerman, M. (2013). Benchmarking the Performance of Microsoft Hyper-V
server, VMware ESXi and Xen Hypervisors. Journal of Emerging Trends in Computing and Information Systems,
4(12), pp. 922-933.

Hennessy, J. & Patterson, D. (2019). Computer Architecture: A Quantitative Approach. (6th ed.). Amsterdam:
Morgan Kaufmann.

Hwang, K. (2017). Cloud Computing for Machine Learning and Cognitive Applications. Cambridge, MA: The MIT
Press.

Popek, G. & Goldberg, R. P. (1974). Formal Requirements for Virtualizable Third Generation Architectures.
Communications of the ACM. 17(7), pp. 412-421. DOI: 10.1145/361011.361073.

Smith, J. E. & Nair, R. (2005). Virtual Machines. San Francisco, CA: Morgan Kaufmann.

36/36

	Virtualization
	Virtual Machines
	Containers

