ICM M-INFO and M1 CPS2		 "2025-11-06"^^xsd:date

ICM – Computer Science Major	 and M1 Cyber Physical and Social Systems
Data Interoperability and Semantics

Exam "PT2H"^^xsd:duration

You are allowed to use an A4 sheet of paper, hand-written, on both side.
You are not allowed to use any computer or electronic device during the test.
Your final grade (/20) will be computed from your raw grade x with the formula ax+b, with a and b magic numbers

Some mistakes that should not have been made:

Part 1: A glimpse on the Language of Drones
With most important parts highlighted in yellow
Protocol Buffers (Protobuf) is a language-neutral and platform-independent mechanism for defining and serializing structured data. It provides a formal way to describe data models and ensures interoperability across different systems by enforcing consistent encoding and decoding. gRPC (gRPC Remote Procedure Call) is a high performance, open source universal RPC framework. It can use protocol buffers as both its Interface Definition Language (IDL) and as its message interchange format.
Protocol developers define Message and Service structures in .proto files, which serve as interface contracts between components. From these definitions, code can be automatically generated in many programming languages (C++, Python, Go, Java, Rust, etc.) to handle serialization, deserialization, and remote procedure calls efficiently and consistently across platforms.

Originally developed by Google in the early 2000's, Protobuf and gRPC have since become open standards. They are now widely used in distributed systems, cloud services, and communication frameworks. gRPC underlies many Google Cloud services and is used for scalable, low-latency, inter-service communication across data centers.
Netflix adopted gRPC to connect thousands of microservices at scale. Other examples of usage include :
(a) MAVSDK / MAVLink (Micro Air Vehicle Link) for communication with small unmanned vehicle (including drones) ;
(b) the Container Runtime Interface (CRI), used by container-orchestration platforms such as Docker and Kubernetes;
(c) TensorFlow, which uses Protobuf to represent machine-learning computational graphs, model checkpoints, metadata, and even training logs

Below is an example Protobuf module definition, inspired by the MAVSDK-Protobuf GitHub project.
It defines a telemetry message for drones, where each vehicle periodically reports its position and flight state.

ICM M-INFO and M1 CPS2		 "2025-11-06"^^xsd:date

ICM M-INFO and M1 CPS2		 "2025-11-06"^^xsd:date

	1/11

	1/11

syntax = "proto3";

package drone.telemetry;

enum FlightMode {
 FLIGHT_MODE_UNKNOWN = 0;
 FLIGHT_MODE_MANUAL = 1;
 FLIGHT_MODE_AUTO = 2;
 FLIGHT_MODE_HOLD = 3;
}

message Position {
 float latitude_deg = 1;
 float longitude_deg = 2;
 sint32 relative_alt = 3; // unit is 0.01 m
}
message DroneStatus {
 string drone_id = 1;
 uint32 velocity_cm_s = 2; // unit is 0.01 m/s
 uint32 direction_deg = 3; // unit is 1°;
 // with 0° is North, clockwise positive.
 string flight_time = 4; // ISO 8601 duration
 FlightMode flight_mode = 5;
 Position position = 6;
 Position target = 7;
}

message DroneMeasurement {
.. bytes blob = 1
}

In this exam, we will consider the following messages:
	Message 1:
Drone PX4_1 has been flying for 24 minutes and 54 seconds. Its target coordinates are latitude 45.5°, longitude 4.3°, altitude 20.5 m.
It is currently in auto mode,
traveling north-east at 36.0 km/h.
	Message 2: Drone PX4_1 made a measurement blob which, if dumped with unix command od -Ax -tx2 reads
000000 db97 f8a6 23fa 1946 d45d d5f7 0fef c7f9
000010 6ed5 90ba f4d7 cd41 533b 57e4 fcfb cf25
000020 8354 8720 bb89 4bcb c6bb 7a20 d2b7 5023
000030 84e9 f0d5 97c7 d0fb ba8a 5fb3 a00e 2714
000040 846d ec47 e0c4 7f12 a4af 06b4 03ab 62d9
000050 fdb7 4e93 7d52 9fbc 935a 1415 990f 37d2
000060 885e 80a1 ddb7 2536 bcfc 5526 07b7 bc70
000070 696b f655 209b c737 2f1a 4d16 ca59 05b7
000080 3617 c02e a7c1 9244 6942 dbaa 258c 5407
000090 cbfd 5232 81f6 a60f d11c b92f 9bbb 3c63
0000a0 0a65 85bd
0000a4

Note 1: Check out the appendices, as they are all important to answer the questions in this exam.
Note 2: Most questions are independent, and can be answered in any order.

Question 1. (1 pt) Justify that encoding an int32 (resp. int64) requires at most 5 bytes (resp. 10 bytes).
Protocol Buffers use Base-128 varints to encode integers. Each byte carries 7 bits of the actual value and 1 continuation bit (the most significant bit) indicating whether another byte follows.

An int32 can take up to 32 bits. Since each byte encodes 7 bits, we need ⌈32 / 7⌉ = 5 bytes to represent all possible values. Similarly, an int64 can take up to 64 bits, requiring ⌈64 / 7⌉ = 10 bytes.

In both cases, all bytes except the last one have their continuation bit set to 1, and the last byte has it set to 0. Therefore, encoding an int32 may use up to 5 bytes, and an int64 up to 10 bytes.

Question 2. (1 pt) Write the VARINT encoded value for the smallest (negative) and largest (positive) possible sint32
The sint32 type uses the “ZigZag” encoding first. Largest (positive) integer is ff ff ff fe (largest even number), and smallest (negative) number is ff ff ff ff (largest odd number).

For the varint encoding, each of the four less significant bytes will contain 7x4=28 bits of payload and the continuation bit set to 1. the most significant byte will contain the remaining 4 bits of payload. and the continuation bit set to 0.

Now we also need to put that in little endian (reverse the order of the bytes)

So the encoding of largest (positive) integer: 0xfeffff0f ;
and the encoding of smallest (negative) integer: 0xffffff0f

Question 3. (1 pt) Justify why the maximal length of a string is 2GB
The length is encoded as an int32 varint. Now half of those possible values are negative, which make no sense.
Maximum length is 2^31-1.
String of length 2^10 (length of 1024 bytes) would be a string of 1kB.
String of length 2^20 would be a string of 1MB.
String of length 2^30 would be a string of 1GB.
So, a string of length 2^31 = 2 x 2^30 is a string of 2 GB.

Question 4. (.5 pt) Explain why a 2GB string in French, Arabic, Japanese, Chinese, etc. would not contain 2GB characters
In Protocol Buffers, a string is stored as a sequence of UTF-8 bytes, not as a sequence of characters. The length field therefore counts bytes, not characters.
UTF-8 is a variable-length encoding for Unicode characters:
· Characters from basic Latin (ASCII) use 1 byte each.
· Characters from most European languages with accents use 2 bytes.
· Characters from Greek, Cyrillic, Arabic, Hebrew, and many others use 2 to 3 bytes.
· Chinese, Japanese, and Korean ideographs generally use 3 bytes (sometimes 4 for rare ones).
Because of that, the number of characters a string contains depends on the average number of bytes per character.
For example:
· In English: 2 GB of bytes ≈ 2 billion characters (1 byte per character).
· In Arabic: 2 GB of bytes ≈ 1 billion characters (≈ 2 bytes per character).
· In Japanese or Chinese: 2 GB of bytes ≈ 600–700 million characters (≈ 3 bytes per character).

Thus, even though the wire format allows up to 2 GB of data, the actual number of characters will be smaller for languages whose scripts require multi-byte UTF-8 encodings.

Question 5. (1 pt) Justify why the “ZigZag” encoding typically leads to more compact messages.
The ZigZag encoding makes signed integers smaller when their absolute value is small, which leads to shorter varints and therefore more compact messages.
In plain varint encoding, negative numbers are stored using two’s complement representation. For 32-bit integers, any negative value then appears as a large unsigned number (close to 2³²), which always requires the maximum 5 bytes.
ZigZag fixes this by interleaving positive and negative values around zero before applying the varint:
0 → 0, −1 → 1, 1 → 2, −2 → 3, 2 → 4, etc.
This way, small negative values produce small unsigned numbers, just like small positive ones. For instance:
· −1 encodes as 1 → 1 byte
· −2 encodes as 3 → 1 byte
· +2 encodes as 4 → 1 byte
· −1000 encodes as 1999 → 2 bytes
Without ZigZag, all these negative numbers would require 5 bytes each.
Thus, ZigZag preserves the compactness benefit of varints for both small positive and small negative integers, making messages significantly smaller when signed fields are used.

Question 6. (2 pt) An alternative to the wire format for protocol buffer is JSON. Explain the pros and cons of the binary representation format versus JSON for protocol buffer.
Binary (wire) format – Pros
• Compactness: The wire format uses varints, fixed-width numbers, and length-delimited fields, making it much smaller than JSON. This reduces bandwidth and storage use.
• Speed: Binary encoding and decoding are faster, since the structure and types are known from the .proto definition—no need for text parsing or type inference.
• Precision and type safety: Numeric and boolean fields retain exact types and values, avoiding ambiguities of JSON (e.g. integers larger than 2⁵³ losing precision in JavaScript).
• Deterministic structure: Field order and representation are fixed by the binary schema, ensuring consistent results across languages and platforms.

Binary (wire) format – Cons
• Human readability: Binary data is not directly readable or editable; debugging and logging require specific tools (e.g. protoc --decode).
• Interoperability with text-based systems: Web APIs and scripts often expect JSON, so binary data needs an additional conversion layer.
• Less self-descriptive: Field names and types are not included in the binary message—interpreting it requires the corresponding .proto schema.

JSON representation – Pros
• Human-readable and self-describing: Easier to inspect, debug, or test manually; keys are explicit field names.
• Widespread support: JSON parsers exist in nearly every environment, making it simple to integrate with REST APIs or web clients.
• Schema flexibility: Can be interpreted even without the original .proto file, as field names and structure are explicit.

JSON representation – Cons
• Larger size: Text encoding adds overhead from field names, quotes, and UTF-8 characters.
• Slower parsing: Converting text to binary types (numbers, booleans, enums) is more CPU-intensive.
• Type ambiguity: JSON doesn’t distinguish between int32, int64, and float types, and may lose precision for large integers.

Summary:
Binary (wire) format is optimal for performance, efficiency, and system-to-system communication. JSON is better for human interaction, debugging, and web interoperability. In practice, gRPC uses binary Protobuf for internal RPCs and JSON as an optional interchange format for external or REST-like interfaces.

Question 7. (1.5 pt) For web exchanges, what would be plausible mediatypes for (a) .proto files? (b) binary-encoded protocol buffer messages? (c) JSON-encoded protocol buffer messages?
(a) .proto files
These files contain the schema definitions written in the Protocol Buffers language.
A suitable media type is:
text/plain or, more specifically, text/protobuf (sometimes also written as text/x-proto or text/x-protobuf).
The IANA registration is informal, but text/protobuf is widely used for schema exchange.

(b) Binary-encoded Protocol Buffer messages
These are the compact, wire-format messages used in gRPC and other binary transports.
The standard and officially registered media type is:
application/x-protobuf or application/protobuf (the latter is now preferred by Google and IANA).
You may also see variants such as application/vnd.google.protobuf.

(c) JSON-encoded Protocol Buffer messages
When a Protocol Buffer message is serialized to JSON (e.g. for RESTful APIs using gRPC-Gateway), the natural and registered media type is:
application/json or, to be more explicit, application/protobuf+json (used by some APIs to distinguish from generic JSON).

Question 8 (2 pts) Write a JSON document that could be a plausible equivalent of Message 1
0.5pt if syntax is correct, 0.5pt if structure is correct, 0.5 pts for flight_time, 0.5pt for string vs number,
{
 "drone_id": "PX4_1",
 "velocity_cm_s": 1000,
 "direction_deg": 45,
 "flight_time": "PT24M54S",
 "flight_mode": "FLIGHT_MODE_AUTO",
 "target": {
 "latitude_deg": 45.5000,
 "longitude_deg": 4.3000,
 "relative_alt": 2050
 }
}
Question 9. (.5 pt) Justify that the value to be encoded for speed 36.0 km/h is integer 1000.
The velocity_cm_s field in the .proto definition is defined as uint32 with unit 0.01 m/s.
Step 1 — Convert speed to meters per second:
36.0 km/h × (1000 m / 1 km) × (1 h / 3600 s) = 10 m/s
Step 2 — Convert to the field’s unit (0.01 m/s):
10 m/s ÷ 0.01 m/s per unit = 1000
Therefore, the integer value to encode in velocity_cm_s is 1000.

Question 10. (1 pt) Determine the VARINT encoding of numbers 45, and 1000
you can test here: https://bluecrewforensics.com/varint-converter/
45 = 32 + 8 + 4 + 1 . in binary: 101101 (fits in 7 bits)
Since it fits in a single byte, the MSB = 0 → 0010 1101
VARINT encoding: 2D

remember the technique "divide by two till zero, then read reminders backwards"
1000 -> 500 (reminder 0) -> 250 (0) -> 125 (0) -> 62 (1) -> 31 (0) -> 15 (1) -> 7 (1) -> 3 (1) -> 1 (1) -> 0 (1)
this backward gives 1 1 1 1 1 0 1 0 0 0 (10 bits)
Split into 7-bit chunks, least significant first:
Lower 7 bits: 1101000 → continuation bit = 1 → 1110 1000 → E8
Remaining bits: 111 → last byte → 00000111 → 07
VARINT encoding (little-endian): E8 07

Question 11. (1 pt) Determine the "tags" of the velocity_cm_s and flight_mode fields
velocity_cm_s has field number 2 and wire type 0 (varint).
tag = (102 << 3) | 0 = 100002, so the encoded tag is 0x10.
flight_mode has field number 5 and wire type 0 (varint).
tag = (1012 << 3) | 0 = 1010002, so the encoded tag is 0x28.

Question 12. (0.5 pt) Justify that the full record encoding for the flight_mode field of Message 1 is `2802`
From Question 11, the field flight_mode has tag 0x28

In Message 1, the value of flight_mode is FLIGHT_MODE_AUTO, which corresponds to enum value 2.
Its varint encoding is therefore 0x02.

When encoded in the message, the field appears as the concatenation of the tag and the value:
0x28 0x02 → written in hexadecimal as 2802.

Hence, the full record encoding for the flight_mode field is 2802.

Question 13. (1 pt) Determine the full record encoding for the drone_id field of Message 1
.5pt tag and length, .5pt string
The field drone_id has field number 1 and wire type 2 (length-delimited).
The tag is (1 << 3) | 102 = 10102, which in hexadecimal is 0x0A.
The value is the string PX4_1, which has 5 bytes.
The length is therefore encoded as the varint 0x05.
The UTF-8 bytes for PX4_1 are: 50 58 34 5F 31.

Concatenating the tag, length, and value gives the full record encoding for the drone_id field :
0A 05 50 58 34 5F 31.

Question 14. (1 pt) Determine the full record encoding for the flight_time field of Message 1
.5pt tag and length, .5 string
The field flight_time has field number 4 and wire type 2 (length-delimited).
The tag is (1002 << 3) | 102 = 1000102, which in hexadecimal is 0x22.
The value is the string PT24M54S.
Its UTF-8 bytes are: 50 54 32 34 4D 35 34 53 (8 bytes total).
The length 8 is encoded as the varint 0x08.

Concatenating tag, length, and value gives the full record encoding for the flight_time field :
22 08 50 54 32 34 4D 35 34 53.

Question 15. (1 pt) Determine the full record encoding for the relative_alt field of Message 1
.5pt tag, .5 value
The field relative_alt has field number 3 and wire type 0 (varint).
The tag is (112 << 3) | 0 = 110002, which in hexadecimal is 0x18.

The value is 2050.
To encode 2050 as a varint:
2050 in binary = 2048 + 2 = 2^11 + 2^1

Split into 7-bit groups (least significant first):
0000010 0000001

Encode each group with continuation bits:

Lower 7 bits 00000010 + continuation = 1 → 10000010 → 0x82

Next 7 bits 00000100 + last = 0 → 00001000 → 0x10

Wait, correction: 2050 = 0b100000000010, groups are:
LSB first → 0000010 0001000 (which is 0x82 0x10).

Thus varint(2050) = 0x82 0x10.

Concatenating the tag and the varint value:
18 82 10.

Hence, the full record encoding for the relative_alt field is 188210.

Question 16. (2 pts)
· Find the IEEE 754 floating point encoding of the longitude 4.3, approximated at ±0.05
· Find the IEEE 754 floating point encoding of the latitude 45.5

4.3 ±0.05
First the sign is S = 0
We first divide by two until we get a value between zero and one: 2.15 ±0.025 -- 1.075 ±0.0125
So the multiplier needs to be 4 = 2(129-127) so E = 128+1 = 1000 0001
let's try to represent 1.075 in a binary fraction number: 1 + 0x 0.5 + 0x 0.25 + 0x 0.125 + 1x0.0625 = 1.0625
Given 1.0625 = 1.075 – 0.0125, it's in the tolerance interval and what we'll actually encode. So M = 000100…
S E M
1 1000 0001 000100...
0100 0000 1000 1000 ..
40 88 00 00

45.5
This time we'll solve it directly:
45.5 = 32 + 8 + 4 + 1 + 0.5 = 101101.12 = 25 x 1.011011 = (-1)0 x 2(132 – 127) x 1.011011
So S = 0 , E = 132 = 128+4 = 1000 0100 , and M = 011011000…
S E M
0 1000 0100 011011000…
0100 0010 0011 0110 00…
42 36 00 00

Question 17. (2 pt) Write the full content of Message 1
Let's just put together all the bits:

drone_id: Tag Length Value is 0A 05 50 58 34 5F 31 (see Q13)
velocity_cm_s: tag is 10 (see Q11), value is E8 07 (see Q10b)
direction_deg: tag is 18 (number 3, wire type 0), value is 2D (see Q10a)
flight_time: Tag Length Value is 22 08 50 54 32 34 4D 35 34 53 (see Q 14)
flight_mode: 2802 (see Q12)
position is not part of the message
let's encode the target now.
It's a submessage (type LEN), so tag is (7<<3) | 2 = 00111010 = 3A16
length is 5 bytes for latitude + 5 bytes for longitude + 3 bytes for altitude (see below)= 1310 = 0D
latitude: tag number 1, wire type 5= 00001101 = 0D . value is 42 36 00 00 (see Q16b)
longitude: tag number 2, wire type 5 00010101 = 15 and value is 40 88 00 00 (see Q16a)
altitude 188210 (see Q15)

In summary:

0A 05 50 58 34 5F 31 | 10 E8 07 | 18 2D | 22 08 50 54 32 34 4D 35 34 53 | 28 02 | { 3A 0D 0D 42360000 15 40880000 188210}
not much additions to the previous questions actually: four tag bytes, and one length byte.
1pt putting together what has been found in previous questions,
0.25pt per remaining tag/length byte (up to 1pt max)

Question 18. (1.5 pt) Determine for Message 2: the first 4 bytes, the last 4 bytes, the total number of bytes.
This is a bytes string, so of type LEN.
tag is (1 << 3) | 2 = 0A (0.25pt)
length is A4 (given in the left column of the od output) (0.25pt)
first two bytes of the value are DB97 (0.25 pt)
so the first four bytes are 0AA4DB97

the last four bytes are 0A6585BD (0.25 pt)

the total number of bytes is A6 (tag, length, and A4) = 16610 (0.5 pt)

[bookmark: _Ref179536933]Question 19. (2 pt) Assume one wants to Base 64-encode Message 2 to include it in a (text-based) XML document using the xsd:base64Binary datatype. Determine the first 4 characters and the last 4 characters including padding ('=' characters) if any.
let's Base 64 encode manually the start of 0AA4DB97
0 A A 4 D B 9 7
0000 1010 1010 0100 1101 1011 1001 0111
we take the first four groups of six bits:
000010 101010 010011 011011
2 42 19 27 (decimal)
C q T b (base 64 characters)
CqTb are the four characters (1pt)

Then for the end of the string, 166 bytes is 55 groups of 3 bytes + 1 byte.
So the last byte will be encoded as 2 Base64 characters followed by “==”
BD is the last byte.
1011 1101 (then only zeros)
we make groups of six bits:
101111 010000
47 16 (decimal)
v Q (base 64 characters) … followed by the two padding characters"=="
vQ== are the last four characters (1pt)

So the base64 string for Message 2 would be something like: CqTb…….vQ==

Appendix A: Single precision IEEE 754 floating-point standard
[image:][image: IEEE Standard 754 Floating Point Numbers - GeeksforGeeks]
As an example, the value for number 0xbfc00000 is -1.5

Appendix B: ASCII Table
[image:]

Appendix C: Protobuf wire format
This is an excerpt of the page https://protobuf.dev/programming-guides/encoding/

Base 128 Varints
Variable-width integers, or varints, are at the core of the wire format. They allow encoding of integers with small values using fewer bytes. Each byte in the varint has a continuation bit that indicates if the byte that follows it is part of the varint. This is the most significant bit (MSB) of the byte (sometimes also called the sign bit). The lower 7 bits are a payload; the resulting integer is built by appending together the 7-bit payloads of its constituent bytes.
So, for example, here is the number 1, encoded as `01` – it’s a single byte, so the MSB is not set:
0000 0001
^ msb
And here is 150, encoded as `9601` – this is a bit more complicated:
10010110 00000001
^ msb ^ msb
How do you figure out that this is 150? First you drop the MSB from each byte, as this is just there to tell us whether we’ve reached the end of the number (as you can see, it’s set in the first byte as there is more than one byte in the varint). These 7-bit payloads are in little-endian order. Convert to big-endian order, concatenate, and interpret as an unsigned 64-bit integer:
10010110 00000001 // Original inputs.
 0010110 0000001 // Drop continuation bits.
 0000001 0010110 // Convert to big-endian.
 00000010010110 // Concatenate.
 128 + 16 + 4 + 2 = 150 // Interpret as an unsigned 64-bit integer.
Because varints are so crucial to protocol buffers, in what follows, we refer to them as plain integers. 150 is the same as `9601`.
Message Structure
A protocol buffer message is a series of key-value pairs. The binary version of a message just uses the field’s number as the key – the name and declared type for each field can only be determined on the decoding end by referencing the message type’s definition (i.e. the .proto file).
When a message is encoded, each key-value pair is turned into a record consisting of the field number, a wire type and a payload. The wire type tells the parser how big the payload after it is. This type of scheme is sometimes called Tag-Length-Value, or TLV.
There are different wire types: VARINT, I64, LEN, SGROUP, EGROUP, and I32
	ID
	Name
	Used For

	0
	VARINT
	int32, int64, uint32, uint64, sint32, sint64, bool, enum

	1
	I64
	fixed64, sfixed64, double

	2
	LEN
	string, bytes, embedded messages, packed repeated fields

	3
	SGROUP
	group start (deprecated)

	4
	EGROUP
	group end (deprecated)

	5
	I32
	fixed32, sfixed32, float

The “tag” of a record is encoded as a varint formed from the field number and the wire type via the formula (field_number << 3) | wire_type. In other words, after decoding the varint representing a field, the low 3 bits tell us the wire type, and the rest of the integer tells us the field number.
For example, value `0D` (0000 1101) means field number (1) has wire type (5).

Bools and Enums
Bools and enums are both encoded as if they were int32s. Bools, in particular, always encode as either `00` or `01`.

Signed Integers
The different signed types, sint32 and sint64 vs int32 or int64, encode negative integers in varint differently.

The intN types encode negative numbers as the two’s complement [Note from the professor: which should be well known to you], while the sintN types uses the “ZigZag” encoding. Positive integers p are encoded as 2 * p (the even numbers), while negative integers n are encoded as 2 * |n| - 1 (the odd numbers). The encoding thus “zig-zags” between positive and negative numbers.

Signed Original -> Encoded As
 0 -> 0 ; -1 -> 1 ; 1 -> 2 ; -2	-> 3 ; ...

Non-varint Numbers
Non-varint numeric types are simple. double and fixed64 have wire type I64, which tells the parser to expect a fixed eight-byte lump of data. double values are encoded in IEEE 754 double-precision format.

Similarly float and fixed32 have wire type I32, which tells it to expect four bytes instead. float values are encoded in IEEE 754 single-precision format.

Length-Delimited Records
Length prefixes are another major concept in the wire format. The LEN wire type has a dynamic length, specified by a int32 varint immediately after the tag, which is followed by the payload as usual.
Consider this message schema:
message Test1 {
 string a = 2;
}
A record for the field 'a' is a string, and strings are LEN-encoded. If we set a to "testing", we encoded as a LEN record with field number 2 containing the ASCII string "testing". The result is `120774657374696e67`. Breaking up the bytes,
12 07 [74 65 73 74 69 6e 67]
we see that the tag, `12`, is 00010 010, meaning field 2 of wire type LEN. The byte that follows is the int32 varint 7, and the next seven bytes are the UTF-8 encoding of "testing".
The int32 varint means that the max length of a string is 2GB.

bytes fields are encoded in the same way.

Submessages
Submessage fields also use the LEN wire type. Here’s a message definition with an embedded message of our original example message, Test1:
message Test2 {
 Test1 b = 3;
}
If Test1’s 'a' field (i.e., Test2’s b.a field) is set to "testing", we get ``1a09120774657374696e67``.
Breaking it up:
 1a 09 [12 07 74 65 73 74 69 6e 67]
The last nine bytes (in []) are exactly the same ones from our previous example. These bytes are preceded by a LEN-typed tag, and a length of 9, exactly the same way as strings are encoded.

Appendix D: Protobuf Condensed Reference Card
The following provides the most prominent parts of the wire format in an easy-to-reference format.

A message is encoded as a sequence of zero or more pairs of tags and values.
message := (tag value)*

A tag is a combination of a wire_type, stored in the least significant three bits, and the field number that is defined in the .proto file.
tag := (field << 3) | wire_type, encoded as uint32 varint

A value is stored differently depending on the wire_type specified in the tag.
value := varint for wire_type == VARINT,
 i32 for wire_type == I32,
 i64 for wire_type == I64,
 len-prefix for wire_type == LEN

You can use varint to store any of the listed data types.
varint := int32 | int64 | uint32 | uint64 | bool | enum | sint32 | sint64;
 encoded as varints (sintN are ZigZag-encoded first)

You can use i32 to store any of the listed data types.
i32 := sfixed32 | fixed32 | float;
 encoded as 4-byte little-endian (float is IEEE 754
 single-precision); memcpy of the equivalent C types (u?int32_t,
 float)

[bookmark: _GoBack]# You can use i64 to store any of the listed data types.
i64 := sfixed64 | fixed64 | double;
 encoded as 8-byte little-endian (double is IEEE 754
 double-precision); memcpy of the equivalent C types (u?int64_t,
 double)

A length-prefixed value is stored as a length (encoded as a varint), and then one of the listed data types.
len-prefix := size (message | string | bytes | packed);
 size encoded as int32 varint

A string must use UTF-8 character encoding. A string cannot exceed 2GB.
string := valid UTF-8 string (e.g. ASCII);
 max 2GB of bytes

bytes can store custom data types, up to 2GB in size.
bytes := any sequence of 8-bit bytes;
 max 2GB of bytes

Use the packed data type when you are storing consecutive values of the type described in the protocol definition. The tag is dropped for values after the first, which amortizes the costs of tags to one per field, rather than per element.
packed := varint* | i32* | i64*,
 consecutive values of the type specified in `.proto`
Appendix E: ISO 8601 Duration Format
The ISO 8601 standard defines a textual representation for time durations.
Durations always start with the letter P (for period), and may include a date part and an optional time part introduced by the letter T.

General syntax
P[nY][nM][nD][T[nH][nM][nS]]

Examples
	Duration
	Meaning

	P1Y2M10D
	1 year, 2 months, 10 days

	PT2H30M
	2 hours, 30 minutes

	P3DT12H
	3 days, 12 hours

	PT0.5S
	Half a second

Notes
· The time part (T…) is optional.
· Fractions are allowed, for example PT1.5H means 1 hour and 30 minutes.
· The standard does not fix exact conversions between months/years and days, since calendar months vary in length.
· ISO 8601 durations are often used in RDF, JSON, and XML data models to ensure semantic interoperability of time information.

Appendix F: Base 64 encoding
Base 64 encoding converts every 3 bytes of binary data into 4 printable characters. If the total number of bytes to encode is not a multiple of 3, padding characters '=' are added to complete the final 4-character block:
· If the input length is a multiple of 3 → no padding.
· If 1 byte remains → encoded as 2 Base64 characters followed by “==”.
· If 2 bytes remain → encoded as 3 Base64 characters followed by “=”.
Padding ensures the output length is always a multiple of 4 characters.

The figure below is the Base 64 Alphabet defined in RFC 4648.
[image: Base64 Encode Alphabet]

	11/11

image2.jpeg
32 Bits

Sign

Exponent

Mantissa

1Bit

> <« 8 Bits

Single Precision

> <

23 Bits

IEEE 754 Floating-Point Standard

image3.png
ASCII TABLE

Decimal Hex Char

Decimal Hex Char

Decimal Hex Char

Decimal Hex Char

0 0 [NULL]

1 1 [START OF HEADING]
2 2 [START OF TEXT]

3 3 [END OF TEXT]

4 4 [END OF TRANSMISSION]
5 5 [ENQUIRY]

6 6 [ACKNOWLEDGE]

7 7 [BELL]

8 8 [BACKSPACE]

9 9 [HORIZONTAL TAB]

10 A [LINE FEED]

11 B [VERTICAL TAB]

12 c [FORM FEED]

13 D [CARRIAGE RETURN]
14 E [SHIFT OUT]

15 F [SHIFT IN]

16 10 [DATALINK ESCAPE]
17 11 [DEVICE CONTROL 1]
18 12 [DEVICE CONTROL 2]
19 13 [DEVICE CONTROL 3]
20 14 [DEVICE CONTROL 4]
21 15 (NEGATIVE ACKNOWLEDGE]
22 16 [SYNCHRONOUS IDLE]
23 17 [END OF TRANS. BLOCK]
24 18 [CANCEL]

25 19 (END OF MEDIUM]

26 1A [SUBSTITUTE]

27 1B [ESCAPE]

28 1C [FILE SEPARATOR]

29 1D (GROUP SEPARATOR]
30 1E [RECORD SEPARATOR]
31 1F [UNIT SEPARATOR]

32
33
34
35
36
37
38
39
40
2
42
43
44
45
26
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

20
21
22
23
24
25
26
27
28
29
2A
28
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

[SPACE]
!

e L

S OENAUAWNR O™

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

20
41
42
43
44
45
46
47
48
49
4A
48
4c
4D
4€
4F
50
51
52
53
54
55
56
57
58
59
EN
58
sC
5D
SE
SF

)= N<XS<CHWDPOTOZIFrA-"IOTMOO®>E

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
7C
7D
7E
7F

¥ —AmN<XS<CAUWTI0TO33—A— =@ =*0Q0TV

[DEL]

image4.png
Value

1
1;
1;
13
12
15
16

BEBowvousunne

emozErmunHTIaTmMON®

Encoding Value

17
15
19
20
21
22
23
2
25
26
27
25
2
3
31
32
B

Table 1: The Base 64

Encoding Value

SmohmanTeN<xE<C AN

34
35
36
37
E
39
e
a3
a2
a:
P
as
a6
a7
gt
pE
so

Alphabet

Encoding Value

MKE<Edma00033 AL

51
52
53
54
55
56
57
B
59
60
61
62
&:

(pac)

Encoding

~tomummbuL RSN

image1.png
—1°% x
2(ex
p—
127)
X
1
fr
Qa
C

