

Rule mining with Numerical Predicates

Plate-Forme Intelligence Artificielle

Atelier Decade

DEcouverte de Connaissances et Apprentissage dans les Données graphEs

<u>Armita Khajeh nassiri</u>, Nathalie Pernelle, Fatiha Saïs

LISN - CNRS - Paris Saclay University - University Sorbonne Paris Nord

SAINT-ÉTIENNE 27 juin - 1^{er} juillet 2022

Overview

- Rule mining : some techniques
- Our Approach: Rules with numerical predicates
- KG completion: Rules vs KG Embedding
- Ongoing and Future work

Overview

- Rule mining : some techniques
- Our Approach: Rules with numerical predicates
- KG completion: Rules vs KG Embedding
- Ongoing and Future work

Input: Knowledge graph

4

RDF Knowledge graph KG

 $\{(h, r, t) \subseteq E \times R \times E\}$

Ex: (Barack_Obama, marriedTo, Michel_Obama)

Input: Knowledge graph

RDF Knowledge graph KG

 $\{(h, r, t) \subseteq E \times R \times E\}$

Ex: (Barack_Obama, marriedTo, Michel_Obama)

A **horn rule** or implication : B1 \land B2 \land ... \land Bn \Rightarrow r(x, y)

Body

conclusion

hasChild(X,Y) \land marriedTo(X,Z) \rightarrow hasChild(Z,Y)

hasChild(X,Y) \wedge marriedTo(X,Z) \rightarrow hasChild(Z,Y) \rightarrow Quality measures : confidence , support , head Coverage

Rule Mining

Rule mining techniques can be categorized into :

- Generate and test Techniques
- Divide and Conquer Techniques

Rule Mining

Rule mining techniques can be categorized into :

- Generate and test Techniques
- Divide and Conquer Techniques : TILDE

1. Tilde: Top-down induction of first-order logical decision trees. *Artificial Intelligence, Blockeel, H., & De Raedt, L. (1998)*

Rule Mining

11

Rule mining techniques can be categorized into :

- Generate and test Techniques : AMIE3 (AMIE+, AMIE), RUDIK, AnyBURL
- Divide and Conquer Techniques : TILDE

1. AMIE3: Fast and exact rule mining with amie 3. In A. Harth et al. (Eds.), The semantic web, *Blockeel, Lajus, J., Galárraga, L., & Suchanek, F. (2020)*

- 2. Rudik: Robust Discovery of Positive and Negative Rules in Knowledge-Bases. VLDB Endow. Ortona, S., Meduri, V. V., & Papotti, P. (2018)
- 3. AnyBURL: Anytime Bottom-Up Rule Learning for Knowledge Graph, IJCAI, Meilicke, C., Chekol, M. W., Ruffinelli, D., & Stuckenschmidt, H. (2019)

Rule Mining - Generate and test Techniques

Heuristic technique with backtracking :

- 1- Consider a candidate rule
- 2- Compute quality measures for this rule
- 3- **Refine** the rule to generate more candidates and test

Guarantees to find rules that fulfill quality measures and the language bias

Rule Mining - Language Bias

Language bias is a trade off between expressivity and performance

- No Reflexive atoms : loves(Barack, Barack)
- Connected : diedln(x, y) \Rightarrow wasBornln(w, z)
- Closed: marriedTo(x, y) \land worksAt(x, z) \Rightarrow marriedTo(y, x)

- Start from all possible rules of the form => r (x,y)
- Refine: adding dangling atom, closing atom, instantiated atom

child (a,e) Λ sibling(e, b) => child (a, b)

- Start from all possible rules of the form => r (x,y)
- Refine: adding dangling atom, closing atom, instantiated atom

child (a,e) Λ sibling(e, b) => child (a, b)

=> child (a, b) sibling(e, **b**) => child (a, **b**)

Add dangling atom

- Start from all possible rules of the form => r (x,y)
- Refine: adding dangling atom, closing atom, instantiated atom

child (a,e) Λ sibling(e, b) => child (a, b)

Add dangling atom Add closing atom => child (a, b) sibling(e, b) => child (a, b) child (\mathbf{a} ,e) \wedge sibling(e, b) => child (\mathbf{a} , b)

- Start from all possible rules of the form => r (x,y)
- Refine: adding dangling atom, closing atom, instantiated atom
- Optimization:

AMIE3 has managed to speed up the rule mining approach by a factor of 15 compared to other state of the art.

Exhaustive and efficient !

Rule Mining - RUDIK

- Logical rules like AMIE, but:
 - can also mine negative rules: motherOf (m, c) $\Rightarrow \neg$ fatherOf (m, c)
 - can mine relations between literals:
 rel(a, b) such that rel ∈ {<, ≤, ≠, ≥, >} and a, b are numeric

Ex: hasAge(X, a) \land hasAge(Y, b) \land a > b \Rightarrow notChild(X, Y)

Overview

- Rule mining : some techniques
- Our Approach: Rules with numerical predicates
- KG completion: Rules vs KG Embedding
- Ongoing and Future work

On the Shoulders of AMIE

- We propose a post-processing step to the rules mined by AMIE
- **Objective** : add atoms with numerical predicates to the rule such that the <u>confidence is increased</u>
- Challenge: Numerical predicates take a wide range of values

On the Shoulders of AMIE

- We propose a post-processing step to the rules mined by AMIE
- **Objective** : add atoms with numerical predicates to the rule such that the <u>confidence is increased</u>
- Challenge: Numerical predicates take a wide range of values

How to choose "good" intervals?

On the Shoulders of AMIE

shares_border_with(a,b) => diplomatic_relation (a,b)

place_of_work(a,b) => place_of_birth (a,b)

child (a,e) \land sibling(e, b) => child (a, b)

country (f, b) \land employer(a,f) => residence(a,b)

country_of_citizenship(f,b) Λ screenwriter (a, f) => country_of_origin (a, b)

student_of(a,b) => doctoral_advisor (a,b)

minhc and minConf are satisfied

shares_border_with(a,b) => diplomatic_relation (a,b)

place_of_work(a,b) => place_of_birth (a,b)

child (a,e) \land sibling(e, b) => child (a, b)

country (f, b) \land employer(a,f) => residence(a,b)

 $country_of_citizenship(f,b) \land screenwriter (a, f) => country_of_origin (a, b)$

student_of(a ,b) => doctoral_advisor (a,b)

place_of_work (a,b) => place_of_birth(a,b)

Enrich the rule by trying every numerical predicate with every variable in rule

has_Population has_GDP inflation_rate date_of_birth date_of_death mass_Kilogram vertical_depth_meter

a, b

. . .

place_of_work (a,b) => place_of_birth(a,b)

has_Population (a, X) ^ place_of_work (a,b) => place_of_birth(a,b)
has_Population (b, X) ^ place_of_work (a,b) => place_of_birth(a,b)
has_GDP (a, X) ^ place_of_work (a,b) => place_of_birth(a,b)
has_GDP (b, X) ^ place_of_work (a,b) => place_of_birth(a,b)
date_of_birth (a, X) ^ place_of_work (a,b) => place_of_birth(a,b)
date_of_birth (b, X) ^ place_of_work (a,b) => place_of_birth(a,b)

. . .

place_of_work (a,b) => place_of_birth(a,b)

has_Population (a, X) ^ place_of_work (a,b) => place_of_birth(a,b)
has_Population (b, X) ^ place_of_work (a,b) => place_of_birth(a,b)
has_GDP (a, X) ^ place_of_work (a,b) => place_of_birth(a,b)
has_GDP (b, X) ^ place_of_work (a,b) => place_of_birth(a,b)
date_of_birth (a, X) ^ place_of_work (a,b) => place_of_birth(a,b)
date_of_birth (b, X) ^ place_of_work (a,b) => place_of_birth(a,b)

Run SPARQL queries, prune those that have no chance of satisfying the minhc.

. . .

place_of_work (a,b) => place_of_birth(a,b)

has_Population (a, X) place_of_work (a,b) => place_of_birth(a,b)
has_Population (b, X) place_of_work (a,b) => place_of_birth(a,b)
has_GDP (a, X) place_of_work (a,b) => place_of_birth(a,b)
has_GDP (b, X) place_of_work (a,b) => place_of_birth(a,b)
date_of_birth (a, X) place_of_work (a,b) => place_of_birth(a,b)
date_of_birth (b, X) place_of_work (a,b) => place_of_birth(a,b)

Run SPARQL queries, prune those that have no chance of satisfying the minhc.

date_of_birth (a,X) ^ place_of_work (a,b) => place_of_birth(a,b)

- Turn into a classification problem, based on functionality of the conclusion predicate
 - $\forall a: date_of_birth(a, X) \land place_of_work(a, y) \land place_of_birth(a,z)$

```
Class =1 if y=z
Class =0 if y \neq z
```


date_of_birth (a,X) \land place_of_work (a,b) => place_of_birth(a,b)

- Classify instances based on:

 $\forall a : date_of_birth(a, X) \land place_of_work(a, y) \land place_of_birth(a, z)$

Class =1 if y=zClass =0 if $y \neq z$

Use a supervised binning technique that discretizes the values of the numerical predicate based on the class labels

date_of_birth (a,X) ^ place_of_work (a,b) => place_of_birth(a,b)

Supervised binning: Optimal binning, MDLP, Entropy, etc.

date_of_birth (a,X) ^ place_of_work (a,b) => place_of_birth(a,b)

- Sort the intervals based on "not event rate" to opt for higher confidence

- For each interval, try exclude it from the rule Prune: Whenever "not event rate" less than the confidence of parent rule

date_of_birth (a,X) ^ place_of_work (a,b) => place_of_birth(a,b)

- Sort the intervals based on "not event rate" to opt for higher confidence

- For each interval, try exclude it from the rule Prune: Whenever "not event rate" less than the confidence of parent rule
- Recompute the quality measures of head coverage and confidence
- Keep the new rule if confidence increased wrt. Parent conf and minhc satisfied

place_of_work (a,b) => place_of_birth(a,b)

date_of_birth(a,y) \land y \in [1945, ∞] \land place_of_work(a,b) => place_of_birth(a,b)

date_of_birth(a,y) \land y \in [1801, 1820] \land place_of_work(a,b) => place_of_birth(a,b)

On the shoulders of AMIE

We have implemented options for merging intervals and keeping new rules

- Merge the biggest consecutive intervals
- Merge all intervals with same predicate and variable

The quality measures should be re-computed.

On the shoulders of AMIE

As long as the <u>max number of atoms</u> defined by the user allows:

- Add atoms with different numerical predicates

population(b, y) \land y \notin [- ∞ , 100K] \land date_of_birth (a,z) \land z \notin [1990, ∞] \land place_of_work (a,b) => place_of_birth(a,b)

- Prune: Predicates with variables that did not pass the minhc in previous step.

On the shoulders of AMIE

Dataset:

	FB15K-237Num	LitWD19K
#Entities	12,493	18,986
#Relations	237	182
#Attributes	116	151
#StruTriples	27,899	288,933
#AttrTriples	82,992	63,951
#Train		260,039
#Test	10,359	14,447
#Valis	10,359	14,447
#RulesAmie	32017	737
#EnrichedRules	71200	4180

36

Overview

- Rule mining : some techniques
- Our Approach: Rules with numerical predicates
- KG completion: Rules vs KG Embedding
- Ongoing and Future work

Refinement Tasks

Different Refinement tasks:

- Triple Classification
- Relation Prediction
- KG Completion
- Data Linking
- Error Detection
- ...

Refinement Task: KG Completion

KG Completion or Link Prediction

Predict missing links: (?, r, t) (h, r, ?)

Knowledge graph embeddings:

40

41

Prediction:

RULE: hasChild(X,Y) \land marriedTo(X,Z) \rightarrow hasChild(Z,Y)

X= Joe, Y= Jill, Z= Ashley : hasChild(Joe, Ashley)

date_of_birth(a,y) \land y \notin [1945, ∞] \land place_of_work (a,b) => place_of_birth(a,b)

place_of_birth(Einstein, ?)

date_of_birth(a,y) \land y \in [1945, ∞] \land place_of_work (a,b) => place_of_birth(a,b)

place_of_birth(Einstein, ?)

- Run SPARQL queries, get all possible candidates for the tail of the test triple
- Aggregate over the answers

place_of_birth(Einstein, ?)

R1 [conf =0.8] [New Jersey, Bern]

R2 [conf=0.6]

[Ulm]

R3 [conf= 0.4]

[Ulm, Berlin]

Most Frequent	

place_of_birth(Einstein, ?)

R1 [conf =0.8]

[New Jersey, Bern]

R2 [conf=0.6]

<u>[Ulm]</u>

R3 [conf= 0.4]

[<u>Ulm</u>, Berlin]

Overview

- Rule mining : some techniques
- Our Approach: Rules with numerical predicates
- KG completion: Rules vs KG Embedding
- Ongoing and Future work

Ongoing and Future work

- Exploring different binning techniques
- Studying the effects of merging intervals on the KG completion task
- KG completion: More/better aggregate strategies
- More optimizations in the pipeline

Ongoing and Future work

- Exploring different binning techniques
- Studying the effects of merging intervals on the KG completion task
- KG completion: More/better aggregate strategies
- More optimizations in the pipeline

Thank you! Questions and suggestions are more than welcome!