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Problem
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➢Annotation is a tedious and repetitive task done regularly when 
new document formats are introduced. 

➢How to select a small and relevant subset of unstructured 
document to annotate in order to reduce data annotation effort ?
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State of the art

Two approaches

Pattern matching Machine learning

Object detection 
in images

Word classification

Advantage (+)
• Simple to implement when documents are 

homogeneous and similar.

Disadvantages (-)
• Does not generalize,

• Maintenance requires time and expertise. 

Advantage (+)
• Can be generalized for many document models.

Disadvantages (-)
• The need for a set of annotated examples.

Information Extraction from Unstructured Documents

[1] R. B. Palm, F. Laws, and O. Winther, “Attend, copy, parse end-to-end information extraction from documents,” in 2019 International Conference on Document Analysis and Recognition (ICDAR). 
IEEE, 2019, pp. 329–336.
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Methodology & system description

<(x, y, h, w, class)>

image annotation

{"image_id":0,

"file_name":"images\/facture_0.jpg",

"height":1170,

"width":827,

"annotations":[{"bbox":[103,87,145,67],

"bbox_mode":1,"category_id":"0"},

{"bbox":[474,252,123,48],

"bbox_mode":1,

"category_id":"1"}]}

Coco format

…

Train

Step 1 : Model training
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Methodology & system description

Optical 
Character
Recognition

(OCR)

<(x, y, h, w, class, text)>

PyTesseract

Prediction : Object localization in image 

Step 2 : inference 

New document

<(x, y, h, w, class)>

MR xxxxx xxxxx

xx ROUTE DE LOUCHES 

62610 AUTINGUES

Text extraction from image

{[408, 250, 569, 298], 
['ADRESS_D’]}

Control functions : content & position
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Architecture of the model

Feature map

Learning model used

Faster RCNN architecture (CNN + feature map)

Pre-trained on the COCO dataset :

• 121,408 pictures

• 888,331 annotated objects (box)

• 80 labels

Evaluation metric : Average Precision (AP)

Objet detection model

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll ár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European Conference on Computer Vision, 

2014, pp. 740–755.
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Methodology & system description
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Experiments

Evaluate the impact of the number of documents in the training set on the prediction accuracy.

Object to be predicted by the model :

✓Recipient address (0)

✓ Sender address (1)

✓ Logo (2)

✓Datamatrix (3)

Training datasets :

Evaluate the impact of the number of documents :

• 1 template - 8 documents

• 8 templates - 8, 24, 56 documents

• 9 templates - 9 documents

Experiment protocol
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Experiments

Results

AP model results for each dataset

Best prediction score
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Methodology & system description

Triplet-loss 

model
Clustering

All 

documents

Embedding 

List

Cluster 1

Cluster K

Small 

Training 

Dataset

.

.

.

.

Select nearest 

document to 

the centroid

E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”in Similarity-Based Pattern Recognition, A. Feragen, M. Pelillo, and M. Loog, Eds. Cham: Springer International Publishing, 2015, 
pp. 84–92.
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Best training candidate selection
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Best training candidate selection

Anchor

Positif

Negatif

Deep Architecture L2 Embedding
Triplet 

Loss
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Methodology & system description
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A projection of document embeddings
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Experiments
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Prototype
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Conclusion and perspectives

• In this work, we have shown that the Triplet-loss based model combined with clustering can be 

used to select a subset of relevant documents to annotate and train a Faster R-CNN model.

• In future work :

• Conduct experiments on a larger number of templates

• Expand our work by designing new experiments :

1. unify the Triplet-loss model with the CNN detector model by making them share some of their 

features,

2. compare the regular Triplet-loss + k-means model with a unified deep embedding clustering (DEC) 

approach,

3. going further in the Few-shot learning direction by leveraging existing methods such as the 

matching networks to help our model get the most information from our dataset during training.
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